An Analytical Model of Quad Cable to 1 GHz: Part 2

Tom Perkins: Commercial and Defense Microwaves: Do They Enhance One Another?

Featured Products

Product Highlights

Ideas for Today’s Engineers: Analog · Digital · RF · Microwave · MM-Wave · Lightwave
C.W. SWIFT & Associates, Inc.

C.W. SWIFT & Associates distributes our extensive inventory of SGMC Microwave’s quality products ... OFF THE SHELF!

Including These Connector Series

<table>
<thead>
<tr>
<th>Connector Series</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.85mm</td>
<td>DC-65 GHz</td>
</tr>
<tr>
<td>2.92mm</td>
<td>DC-40 GHz</td>
</tr>
<tr>
<td>7mm</td>
<td>DC-18 GHz</td>
</tr>
<tr>
<td>2.4mm</td>
<td>DC-50 GHz</td>
</tr>
<tr>
<td>3.5mm</td>
<td>DC-34 GHz</td>
</tr>
<tr>
<td>SSMA</td>
<td>DC-40 GHz</td>
</tr>
</tbody>
</table>

ISO 9001:2008

C.W. SWIFT & Associates, Inc.
15216 Burbank Blvd., Van Nuys, CA 91411
Tel: 800-642-7692 or 818-989-1133 or Fax: 818-989-4784
sales@cwswift.com • www.cwswift.com

CLOSED EVERY ST. PATRICK’S DAY!
RF, Microwave, Microelectronics & Power Solutions

Components, Modules, Integrated Assemblies & Subsystems

- Amplifiers, Filters, and Passive & Active Components
- Integrated Microwave Assemblies
- SAW Filters & Oscillators
- Optoelectronic Solutions
- High Temperature Microelectronics
- Power Conversion & Distribution

Call +1 (855) 294 3800 or visit micro.apitech.com | Check us out on social:
Optical Spectrum Analyzer

Anritsu Company introduced the Optical Spectrum Analyzer (OSA) MS9740B that combines high-end measurement-sensitivity performance, expanded functionality, compact size, and high-speed measurement capability. With the MS9740B, design and manufacturing engineers can accurately verify and improve time-to-market of 100G/400G optical modules designed into 5G and Cloud communications systems.

To improve measurement speed by 50 percent, Anritsu enhanced the optical receiver bandwidth settings of the MS9740B. This design approach significantly improves throughput while maintaining high performance. The benchtop OSA has wide dynamic range of >70 dB and maximum measurement processing time of 0.35s (sweeping 30-nm wavelength). Optical sensitivity is as low as –90 dBm. Accurate side mode suppression ratio (SMSR) measurements can be made at 45 dB or more, helping engineers have confidence in their designs.

Anritsu Company
anritsu.com

Power Sensors for IoT Bluetooth Testing

LadyBug Technologies’ LB479A and LB480A are ideal for testing Bluetooth devices. The sensors have very good dynamic range and are suitable for measuring radiated power as well as direct connectivity to the Bluetooth DUT. Both sensors provide statistical pulse measurement capability. This capability is ideal for manufacturing test systems where a quick numerical measurement of average and pulse power is required without complex measurement set-up. The LB480A includes triggering features along with pulse profiling capability. LadyBug sensors can be ordered with a variety of connectors, reducing or eliminating adaptor requirements, thereby increasing measurement accuracy.

LadyBug Technologies, LLC
ladybug-tech.com
Corning Gilbert

Microwave Push-on Interconnects

GPO®
- Center-to-center spacing of 0.170” available for increased package density
- The GPO® blindmate interconnect, Part No. A1A1-0001-01, weighs just 0.17 grams
- Frequency from DC to 40 GHz
- Designed to accommodate both radial and axial misalignment with negligible VSWR change

GPPO®
- Center-to-center spacing of 0.140” available for increased package density
- The GPPO® blindmate interconnect, Part No. B1B1-0001-01, weighs just 0.09 grams
- Frequency from DC to 65 GHz
- Designed to accommodate both radial and axial misalignment with negligible VSWR change

DISTRIBUTED BY:

CORNING
ISO 9001:2000 CERTIFIED

IN STOCK FOR FAST DELIVERY!!!
22: Feature Article

An Analytical Model of Quad Cable to 1 GHz: Part 2
By Kenneth S. Schneider

Transmission lines -- basically telephone network local loops -- used by these technologies for the transmission media, present many different and complex characteristics at these microwave frequencies -- characteristics which were either unknown or ignored until relatively experimental measurements uncovered them. These characteristics may well affect the performance of the new broadband technologies. The model presented captures these characteristics analytically and can be used as a guide in developing simulation equipment for the testing of these technologies. The model presented includes the direct path attenuation, phase (Group Delay), input impedance and Characteristic Impedance of the direct path-single line loop. The model includes the characterization of Far End Crosstalk, FEXT and especially the “normalized” FEXT (ELFEXT) both within a single Quad (Intra-Quad) -- which is often alternatively referred to as “In-Quad” -- and between Quads (Inter-Quad). After presentation, this model is compared to experimental measurements made with an actual Quad Cable in current use. The model presented is derived as a further development of the approach to this problem presented by Youla [1]. This is based essentially upon Maxwell's equations and the electro-magnetic theory associated with transmission lines -- but applied to multiple transmission lines -- essentially a matrix-vector extension of the “traditional” transmission line equations.
The future holds unforeseen challenges. Lowest latency communications can help overcome the toughest challenges. Analog Devices’ system-level expertise in RF, microwave and millimeter wave technology helps unlock the entire wireless spectrum, and the opportunities that come with it. Learn more at analog.com/RF.
High Frequency Electronics

At the recent IEEE International Microwave Symposium in Boston, Strategy Analytics held a Lunch & Learn titled: Can Commercial Networks Learn from Defense Technologies (and Vice Versa)? Having worked in defense related microwaves for most of my career, while having an underlying interest in communications as a radio amateur for even longer, and most recently having acquired knowledge of cellular networks, I can appreciate a confluence of techniques and hardware that now enables people worldwide to benefit from our labors. Eric Higham, Director or SA’s Advanced Semiconductor Applications, discussed subjects such as defense use of the internet, shared spectrum, Active Electronically Scanned Arrays (AESAs), and Massive MIMO.

An AESA is a type of phased array antenna which is computer controlled where the beam can be electronically steered to a point in different directions without physically moving the antenna. This technique has found its way into the commercial world for steering pinpoint beams.

Nomadic 5G was also mentioned. Having curiosity about such a concept, I found that this could refer to private networks, e.g., inter-connected off-road vehicles like agricultural harvesters, tandem rollers, or airport vehicles that are independent from the network infrastructure. These are usually private networks. Scenarios include millimeter-wave technology for short range high bandwidth communication and ranging.

History Lesson

I well remember the Microwave and Millimeter Wave Integrated Circuit (MIMIC) Program sponsored by DARPA that ran from about 1987 to 1995, directed primarily by Eliot Cohen. This program, which funded numerous defense contractor semiconductor foundry efforts, led to production of low cost and reliable gallium arsenide (GaAs) FET circuitry. This in turn greatly enabled proliferation of millions of cell phones and more recently, Internet of Things, vehicular radar, and much more.

This two-way “handshake” of technology reminds me of a classic commercial to defense hand-off that occurred at the outset of World War II. It is an example of shared technology in a less sophisticated, but nonetheless critical time requiring rapidly deployable military assets. In those days there suddenly was an enormous need for shortwave receivers and transmitters and electronic parts.
Except for some VHF/UHF communications activity called War Emergency Radio Service (WERS) established in June 1942, the amateur radio system was shut down. Actually, WERS was not amateur radio, but it was mostly run by amateurs in the old 2 ½ and 1 ¼ meter bands. Apparently, communities were issued the station licenses and hams provided the operating skills. At peak there were 5,000 transmitters operated under 250 special licenses. Unlike during WWI, however, during WWII only transmitting in the short-wave bands was banned. Receiving signals was not only permitted, but encouraged. Antenna installations, for the most part, remained elevated. Due to the sudden military shortages, many amateurs donated their equipment to the war effort, particularly like short-wave high-quality commercially manufactured receivers like the National Radio Company’s HRO-M. A former National Radio employee told me in 1986 that HRO stood for “helluva rush order.” Also, much like scrap metal, things like D’Arsonval movement panel meters and transmitting vacuum tubes, such as 807s, were collected for military use.

The Federal Communications Commission (FCC) handled the amateur radio shutdown in a clever manner. Back then there was a clear distinction made between operator and station licenses. The FCC suspended the amateur station licenses. They continued to hold license exam sessions and issue operator licenses only.

In my research I found that apparently the German military operating VHF radios in France did not realize they could be heard in Great Britain. This actually illustrates the value of knowledge likely gained by hobbyists, as VHF communications was in its infancy.

Another defense to commercial example: the once highly classified magnetron of radar fame is now in almost every kitchen.

Ponder This

So, I close with an observation and a question. There is no doubt that defense research has hastened the current state of commercial microwave proliferation. Our commercial cellular communications infrastructure now greatly exceeds that of the military communications networks, sort of the way that the Eisenhower highway system built in the 1950s could provide emergency military aircraft takeoff/landing strips if the automobiles and trucks were removed. If in the event of a war situation, which we hope never happens, would we be willing to sacrifice our cellular assets to the military? Our frequency bands used for entertainment such as satellite TV to military aircraft operations? Our amateur radio repeaters? And even our personal wi-fi compatible equipment which may not even yet exist?
Meetings and Events

See: https://conferences.ieee.org/

2019 Second International Workshop on Mobile Terahertz Systems (IWMTS)
1 - 3 July 2019, Bad Neuenahr, Germany
Sponsors: IEEE Microwave Theory and Techniques Society; University of Duisburg-Essen
Field of Interest: Components, Circuits, Devices and Systems; Computing and Processing; Fields, Waves and Electromagnetics; Photonics and Electrooptics; Signal Processing and Analysis

2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)
16 - 18 July 2019, Bochum, Germany
Sponsors: European Microwave Association - EuMA; IEEE Microwave Theory and Techniques Society
Field of Interest: Bioengineering; Communication, Networking and Broadcast Technologies; Components, Circuits, Devices and Systems; Engineered Materials, Dielectrics and Plasmas; Fields, Waves and Electromagnetics; Photonics and Electrooptics

2019 IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G)
15 - 16 August 2019, Atlanta, Georgia, USA
Sponsors: Georgia Institute of Technology; IEEE Microwave Theory and Techniques Society
Field of Interest: Communication, Networking and Broadcast Technologies; Components, Circuits, Devices and Systems; Fields, Waves and Electromagnetics; Photonics and Electrooptics

2019 12th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT)
20 - 22 August 2019, London, United Kingdom
Sponsors: IEEE Microwave Theory and Techniques Society; IEEE Photonics Society; Queen Mary University of London
Field of Interest: Communication, Networking and

2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
1 - 6 September 2019, Paris, France
Sponsors: IEEE Microwave Theory and Techniques Society; International Society of Infrared, Millimeter, and Terahertz Waves
Field of Interest: Aerospace; Bioengineering; Communication, Networking and Broadcast Technologies; Components, Circuits, Devices and Systems; Engineered Materials, Dielectrics and Plasmas; Fields, Waves and Electromagnetics; Photonics and Electrooptics

HFE’s August Issue

Defense Electronics
EDA

CONTACT YOUR SALES REP TODAY!

2019 IEEE WIE Leadership Summits
IEEE Women in Engineering International Leadership Summits (WIE ILS) provide regional opportunities to foster networking, mentorship, and collaboration. IEEE WIE will continue the WIE ILS program in 2019 as part of the portfolio of global initiatives that focus on Empowerment, Entrepreneurship, Leadership, and Emerging/Future Technology.
https://wie.ieee.org/leadership-summits2019

Broadcast Technologies; Components, Circuits, Devices and Systems; Engineered Materials, Dielectrics and Plasmas; Fields, Waves and Electromagnetics; Photonics and Electrooptics

2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)
28 - 30 August 2019, Nanjing, China
Sponsors: IEEE Microwave Theory and Techniques Society; Southeast University, China
Field of Interest: Communication, Networking and Broadcast Technologies; Components, Circuits, Devices and Systems; Fields, Waves and Electromagnetics; General Topics for Engineers; Power, Energy and Industry Applications

HFE's Defense Electronics EDA

CONTACT YOUR SALES REP TODAY!
Lowest Noise in the Industry

Industry Leading Performance!
The LUXYN™ MLVS-Series Frequency Synthesizers from Micro Lambda Wireless is one of the fastest and quietest synthesizers on the market. Standard frequency models are available covering 500 MHz to 20 GHz and 500 MHz to 10 GHz with options to cover down to 50 MHz and up to 21 GHz in a single unit.

With the lowest noise in the industry, (phase noise at 5 GHz is -130 dBc/Hz @ 10 kHz offset and at 10 GHz is -125 dBc/Hz @ 10 kHz offset), these synthesizers are designed for low noise & fast tune applications such as Receiving Systems, Frequency Converters and Test & Measurement Equipment.

For more information contact Micro Lambda Wireless.

www.microlambdawireless.com

Micro Lambda is a ISO 9001:2015 Registered Company

“Look to the leader in YIG-Technology”
Wi-Fi Celebrates 20 Years; More Than 20 Billion Device Shipments Anticipated

More than 20 billion Wi-Fi devices are forecasted to ship between 2019 and 2024, according to a new market data report from global tech market advisory firm, ABI Research. Continued growth in traditional markets of strength, alongside traction in mesh networking systems, smart home, automotive, and IoT applications will drive the Wi-Fi market forward to nearly 4 billion annual device shipments by 2024.

“2019 marks the 20th anniversary of Wi-Fi, though the technology shows no signs of slowing down,” says Andrew Zignani, Principal Analyst, ABI Research. “Wi-Fi 6 is quickly gaining momentum in networking devices, while client devices are already arriving into the market and are anticipated to ramp up considerably over the next 12-18 months. The need for faster, more reliable, more efficient, and more widespread Wi-Fi coverage is becoming increasingly vital in a world filled with more Wi-Fi devices at both ends of the performance spectrum, from high resolution streaming and low latency gaming to battery constrained IoT devices,” says Zignani.

Wi-Fi’s expansion into the 6GHz and sub-1GHz bands through WiGig and HaLow have been considerably slower, though ABI Research anticipates these technologies will carve out their own success in the coming years. “WiGig still has considerable potential for point-to-point applications such as wireless video streaming, virtual reality, and docking, and has recently seen considerable traction in fixed wireless access applications. HaLow chipsets and IP are finally coming to the market thanks to efforts from start-ups as Newracom, Morse Micro, and Palma Ceia SemiDesign among others, and the inherent flexibility of the technology could make it very attractive in LPWA type applications,” says Zignani.

However, most exciting of all is the anticipated availability of 6GHz spectrum over the next few years. “Though there is much work to be done here from a regulatory perspective, the addition of a possible 1.2GHz of additional spectrum for Wi-Fi that will be unencumbered by legacy Wi-Fi technologies could lead to an unprecedented performance and capacity boost for Wi-Fi in the future,” says Zignani. “The Wi-Fi 6 standard is adding support for 6GHz capabilities, and work is already underway for the next generation that will take full advantage of the new spectrum. These enhancements combined will ensure that Wi-Fi will continue to drive value well into its 30th anniversary and beyond,” Zignani concludes.

These findings are from ABI Research’s Wireless Connectivity Technology Segmentation & Addressable Markets market data. This report is part of the company’s Wi-Fi, Bluetooth and Wireless Connectivity research service, which includes research, data, and analyst Insights. Market Data spreadsheets are composed of deep data, market share analysis, and highly segmented, service-specific forecasts to provide detailed insight where opportunities lie.

—ABI Research
abiesearch.com

Rural Communities Drive $20.2 Billion in Rural Cell-site Expenditures in 2019

There is a growing divide in terms of the quality of mobile broadband coverage between rural and urban communities. Mobile operators are responding to local community and state regulatory pressure to ensure mobile cellular coverage is not just “voice-capable” but also “mobile broadband-capable.” In 2019, an estimated US$20.2 billion will be invested in developed and emerging market rural cell-sites, a 1.2% increase from 2018, reports ABI Research.

Mobile operators and infrastructure vendors are also in the process of rebooting the typical cell-site deployment approach. The macro base-station is now being complemented by low-cost small cells that deliver coverage to a specific rural village or town. Small cell unit shipments will grow at a compound annual growth rate of 10.9% to reach US$2.2 billion by the end of 2024.

“Novel engineering and manufacturing processes have not just made rural cell-site solutions cheaper but also more versatile,” says Ling Kangrui, Research Analyst at ABI Research. “Innovative re-inventions of the traditional cell site include Huawei’s RuralStar Lite and Nokia’s Kuha cell-site. Huawei claims that it has been able to reduce the cost of its RuralStar Lite solution to around US$20,000 and therefore offers a lower return of investment time of between three to five years. The Facebook-backed Telecom Infra Project (TIP) ventures, such as Parallel Wireless vRAN and Fairwaves base station solutions, have radically altered the typical cell-site total cost of ownership model for the operator. Furthermore, tethered and untethered, “balloon-based” solutions such as Altaeros’ SuperTower and Alphabet’s Loon will potentially disrupt the macro cell-site business model,” Kangrui explains.

—ABI Research
abiesearch.com
Exceptionally high Q, low DCR and a wide range of inductance values make our wirewound chip inductors a sure bet!

Engineers love our high-performance, low-cost, wirewound ceramic chip inductors; considered by most to be the best performing wirewounds available.

For example, our 0201HL Series is offered in seven inductance values ranging from 22 to 51 nH – the highest currently offered in an 0201 (0603) package – making them fully optimized for impedance matching in 700 MHz band LTE and 5G applications.

Our 0402DC and 0805HP Series provide the industry’s highest Q factors in their respective sizes for super low loss in high frequency circuits. Select values from 2.6 to 820 nH, including 0.1 nH increments from 2.8 to 10 nH in the 0402DC Series.

Find out why our customers are so bullish on our wirewound ceramic chip inductors. Order your free samples today at www.coilcraft.com.
Enabling Revolutionary Nondestructive Inspection Capability

X-rays and gamma rays have a wide range of applications including scanning suspicious maritime shipping containers for illicit materials, industrial inspection of materials and processes, and medical diagnostic and therapeutic procedures. Current technologies, however, are not ideal. X-rays produce a continuum of energies that limit their inspection and diagnostic performance, and gamma rays can only be produced at specific energies unique to a given radioactive isotope.

DARPA announced its Gamma Ray Inspection Technology (GRIT) program. GRIT seeks novel approaches to achieve high-intensity, tunable, and narrow-bandwidth sources of gamma ray radiation in a compact, transportable form factor that would enable a wide range of national security, industrial, and medical applications.

“What we’re trying to do in GRIT is transform the use of x-rays and gamma rays,” said Mark Wrobel, program manager in DARPA’s Defense Sciences Office. “Current sources of gamma rays, like Cobalt-60 or Cesium-137, are not very flexible. They require special licenses to possess and only emit gamma rays at very specific energies. What we desire is a source of very high-energy photons that we can tune to match the application we need. This ranges from more effective detection of illicit cargo, to a more informative medical x-ray.”

GRIT aims to provide a source of tunable, pure x-rays and gamma rays from tens of keV (kilo-electron volts) up through over ten MeV (mega-electron volts). Currently, tunable and narrow bandwidth gamma ray sources only exist at highly specialized user facilities best suited for basic research and are not able to support broad practical applications. Shrinking these photon sources to a transportable system is a major goal and challenge of the GRIT program.

GRIT technology could make possible a range of new inspection and diagnostic protocols. In medical and industrial radiography, for example, GRIT could enable revealing specific elemental and material content, such as calcium in bones or specific metals in cargo. A typical x-ray only shows differences in density in the object being inspected – whether a piece of luggage at an airport, or an individual at a doctor’s office. If successful, a GRIT x-ray source could be tuned to detect and quantify the concentration of specific elements of interest, such as the amount of calcium in a given bone x-ray, enabling radiologists to actually see bone composition.

Tuning energy between 10s of keV to over 100 hundred keV would allow detection of specific elements that might be of interest in characterizing novel materials and processes at micron scales. These techniques would be relevant to defense applications including non-destruction inspection of novel additively manufactured materials and alloys for their elemental composition.

At energy levels in the MeV range, gamma ray photons have high enough energy to actually interact with the nuclei of atoms. Whereas x-rays work by interacting with the shells of atoms, GRIT would be able to stimulate the nucleus of an atom to bring about an effect called nuclear resonance fluorescence, a sort of “fingerprint” that is unique to each isotope of every element in the periodic table.

“With GRIT, you could probe and detect specific isotopes of interest by fine-tuning the photon energy to minimize background noise and take advantage of the nuclear resonance fluorescence phenomenon,” Wrobel said. “Those isotopes could be found in rare-earth elements of interest or special nuclear materials. To be able to definitively say, ‘Yes, there’s highly enriched uranium in this object’ and be able to characterize how much is present would be a significant leap forward over our current capabilities.”

DARPA is seeking expertise in a range of technologies on the GRIT program including advanced accelerator technology, high-energy laser systems, novel control systems, and new x-ray and gamma ray detector technology. GRIT’s focus on new, compact photon sources for inspection complements DARPA’s Intense and Compact Neutron Sources (ICONS) program, which is developing compact neutron sources. The two technologies would work in tandem, yielding a very robust inspection capability.

—DARPA
MMIC FIXED EQUALIZERS

DC to 20 GHz
- Absorptive
- 2x2mm QFN and Bare Die

<table>
<thead>
<tr>
<th>Model</th>
<th>Slope, (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQY-0-63+</td>
<td>0</td>
</tr>
<tr>
<td>EQY-1-63+</td>
<td>1.2</td>
</tr>
<tr>
<td>EQY-2-63+</td>
<td>2.1</td>
</tr>
<tr>
<td>EQY-3-63+</td>
<td>3.2</td>
</tr>
<tr>
<td>EQY-4-63+</td>
<td>4.2</td>
</tr>
<tr>
<td>EQY-5-63+</td>
<td>5.0</td>
</tr>
<tr>
<td>EQY-6-63+</td>
<td>6.5</td>
</tr>
<tr>
<td>EQY-8-63+</td>
<td>8.2</td>
</tr>
<tr>
<td>EQY-10-63+</td>
<td>10.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Slope, (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQY-0-24+</td>
<td>0</td>
</tr>
<tr>
<td>EQY-2-24+</td>
<td>1.2</td>
</tr>
<tr>
<td>EQY-3-24+</td>
<td>2.1</td>
</tr>
<tr>
<td>EQY-5-24+</td>
<td>3.2</td>
</tr>
<tr>
<td>EQY-6-24+</td>
<td>4.2</td>
</tr>
<tr>
<td>EQY-8-24+</td>
<td>5.0</td>
</tr>
<tr>
<td>EQY-10-24+</td>
<td>6.5</td>
</tr>
<tr>
<td>EQY-12-24+</td>
<td>8.2</td>
</tr>
</tbody>
</table>
In the News

Raytheon Honors Lansdale Semi

R. Dale Lillard, President, Lansdale Semiconductor, recently announced that the company was honored for the sixth consecutive year by Raytheon Integrated Defense Systems for Supplier Excellence. This year, Lansdale achieved Raytheon’s highest 5 Star Award.

Raytheon’s Integrated Defense Systems business instituted the annual Supplier Excellence Awards program to recognize suppliers who have provided outstanding service and partnership in exceeding customer requirements. Award candidates are judged on certain criteria, including overall quality, on-time delivery and demonstrated commitment to continuous improvement. A 5 Star recognition is the highest level of recognition a Raytheon Integrated Defense Systems business supplier can achieve for excellence in quality and performance, and Lansdale Semiconductor, Inc. was one of only 16 companies selected.

* * *

Lockheed Martin Honors Custom MMIC

Lockheed Martin recognized 27 small business suppliers that made exemplary contributions to its Missiles and Fire Control business area’s products and services in 2018. Custom MMIC received an award for their exemplary work in helping Lockheed Martin deliver crucial missions to their customers.

Paul Blount, President and CEO of Custom MMIC, and Charlie Trantanella, Chief Scientist, attended the award ceremony and accepted the award on behalf of the Custom MMIC team. “We are excited and honored to have been selected for this prestigious award from Lockheed Martin,” said Paul Blount. “This acknowledgement validates Custom MMIC’s tireless commitment to providing the best products and services possible to our valued customers and partners now and for the future.”

HIGH POWER LIMITERS
LOW FREQUENCY BROAD BAND
100 WATT CW
10MHz - 3000 MHz

- Frequency range down to very low frequency (10 MHz).
- Available single unit covering 10 MHz to 3 GHz (LS00130P100A).
- Low insertion loss and VSWR.
- 100 Watt CW and 1000 Watt Peak (1 Microsec pulse width) power handling capability.
- Built-in DC Block @ input and output.
- Hermetically Sealed Module.

Typical Performance @ +25 Deg. C

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq Range (MHz)</th>
<th>Max Insertion Loss (dB)</th>
<th>Max VSWR</th>
<th>Max Input CW (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS00105P100A</td>
<td>10-500</td>
<td>0.4</td>
<td>1.3:1</td>
<td>100</td>
</tr>
<tr>
<td>LS00110P100A</td>
<td>10-1000</td>
<td>0.6</td>
<td>1.5:1</td>
<td>100</td>
</tr>
<tr>
<td>LS00120P100A</td>
<td>10-2000</td>
<td>0.8</td>
<td>1.7:1</td>
<td>100</td>
</tr>
<tr>
<td>LS00130P100A</td>
<td>10-3000</td>
<td>1.0</td>
<td>2:1</td>
<td>100</td>
</tr>
</tbody>
</table>

Note 1. Insertion Loss and VSWR tested at -10 dBm.
Note 2. Power rating derated to 20% @ +25 Deg. C.
Note 3. Leakage slightly higher at frequencies below 100 MHz.

Other Products: Detectors, Amplifiers, Switches, Comb Generators, Impulse Generators, Multipliers, Integrated Subassemblies

Please call for Detailed Brochures

RoHS Compliant
Made in USA
ISO 9001-2015 Certified

153 Baytech Drive, San Jose, CA 95134
Tel: (408) 945-4398 - Fax: (408) 945-4388
Email: info@herotek.com
Website: www.herotek.com
Visa/Mastercard Accepted

14 High Frequency Electronics
Quality PolyPhaser RF Surge Protection Products Available for Online Purchase Today!

Our expanded eCommerce capabilities now offer:

- A broad range of quality RF surge protection products
- Same-day shipping
- Expanded product data sheets and technical information
- 24/7 online support

Learn more at polyphaser.com

Call us +1 (208) 635-6400

Available for Same-Day Shipping
Richardson RFPD announced availability and full design support for a new silicon carbide module from Wolfspeed. Wolfspeed developed the XM3 power module platform to maximize the benefits of SiC, while keeping the module and system design robust, simple and cost-effective. With half the weight and volume of a standard 62 mm module, the CAB450M12XM3 maximizes power density while minimizing loop inductance and enabling simple power bussing. It is the first part to be launched in the XM3 module platform, with additional offerings to be released in the future.

Richardson RFPD
richardsonrfpd.com

Directional Couplers: 2 - 40GHz Series
VidaRF has expanded its offerings to 5G mmWave products operating from 2-40GHz with 2.92mm interfaces.
- 10,16, 20 and 30dB Coupling Values
- Low VSWR
- High Directivity
- Broad Band & Compact Size
- Operating Temp -55c to +85c
The Right RF Parts.
Right Away.

Available for Same-Day Shipping!

We're RF On Demand, with over one million RF and microwave components in stock and ready to ship. You can count on us to stock the RF parts you need and reliably ship them when you need them. Add Fairview Microwave to your team and consider it done.

Fairviewmicrowave.com
1.800.715.4396

Fairview Microwave
an INFINIT® brand
VNA: 43.5 GHz Option
Anritsu Company introduced a 43.5 GHz frequency option for its 2- and 4-port ShockLine™ MS46122B, MS46322B, MS46522B, and MS46524B vector network analyzers (VNAs) with guaranteed specifications using Anritsu’s Extended-K™ type connectors and components. The ShockLine family becomes the first VNA to support specified 43.5 GHz functionality in a K-connector environment.

Anritsu Company
anritsu.com

26.5 GHz RF Downconverter
The SC5318A is a C to K broadband single-stage downconverter, converting frequencies from 6 GHz to 26.5 GHz down to 50 MHz to 3 GHz. The LO frequency range is from 6 to 26.5 GHz with an input LO range from 6 to 14 GHz. An internal frequency doubler multiplies the input LO range up to 26.5 GHz. This module also features an internal 26.5 GHz synthesized LO, RF preamplifier, and variable gain control, making it a compact, standalone downconverter module. The SC5318A can be combined with SignalCore’s SC5308A to form a broadband 100 kHz to 26.5 GHz downconverter. These high-performance converter modules are compact and rugged, built for easy integration into large systems.

SignalCore
signalcore.com

Power Dividers
Pasternack’s new line of high frequency power dividers consists of 17...
Planar Monolithics Industries, Inc.

DC to 52 GHz, Solid State Switches
SP1T through SP32T

PMI offers a variety of Solid-State Switches covering the DC to 52 GHz frequency range. These designs feature low insertion loss, high isolation and fast switching speed in a slimline package size. Available with TTL compatible drivers for ease of system integration. Custom designs can be supplied using any of our catalog or customer driven specifications. For a full list of available configurations go to: https://www.pmi-rf.com/categoriesswitches

PMI Model No.

<table>
<thead>
<tr>
<th>PMI Model No.</th>
<th>Frequency Range (GHz)</th>
<th>Insertion Loss (dB Typ)</th>
<th>Isolation (dB Typ)</th>
<th>Switching Speed (Typ)</th>
<th>Power Supply</th>
<th>Configuration Size (inches)</th>
<th>Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1T-DC40G-65-T-292FF-1NS</td>
<td>DC - 40</td>
<td>5.5</td>
<td>65</td>
<td>5 ns</td>
<td>+15 V @ 15 mA</td>
<td>-15 V @ 40 mA</td>
<td>SPST</td>
</tr>
<tr>
<td>P2T-100M50G-100-T</td>
<td>0.1 - 50</td>
<td>5</td>
<td>100</td>
<td>50 ns</td>
<td>+5 V @ 88 mA</td>
<td>-5 V @ 63 mA</td>
<td>SP2T</td>
</tr>
<tr>
<td>P3T-500M40G-60-T-55-292FF</td>
<td>0.5 - 40</td>
<td>6</td>
<td>60</td>
<td>50 ns</td>
<td>+5 V @ 35 mA</td>
<td>-5 V @ 15 mA</td>
<td>SP3T</td>
</tr>
<tr>
<td>P4T-100M50G-100-T-RD</td>
<td>0.1 - 50</td>
<td>5</td>
<td>100</td>
<td>50 ns</td>
<td>+5 V @ 154 mA</td>
<td>-5 V @ 135 mA</td>
<td>SP4T</td>
</tr>
<tr>
<td>P5T-500M40G-60-T-55-292FF-SG40G</td>
<td>0.5 - 40</td>
<td>6</td>
<td>60</td>
<td>40 ns</td>
<td>+5 V @ 55 mA</td>
<td>-5 V @ 45 mA</td>
<td>SP5T</td>
</tr>
<tr>
<td>P6T-2G18G-60-T-512-SFF-LV</td>
<td>2 - 18</td>
<td>4</td>
<td>80</td>
<td>50 ns</td>
<td>+5 V @ 121 mA</td>
<td>-12 V @ 33 mA</td>
<td>SP6T</td>
</tr>
<tr>
<td>P7T-0R8G18G-60-T-SFF-SMC</td>
<td>0.8 - 18</td>
<td>4.3</td>
<td>60</td>
<td>75 ns</td>
<td>+5 V @ 300 mA</td>
<td>-5 V @ 100 mA</td>
<td>SP7T</td>
</tr>
<tr>
<td>P8T-500M40G-60-T-55-292FF</td>
<td>0.5 - 40</td>
<td>5</td>
<td>50</td>
<td>50 ns</td>
<td>+5 V @ 300 mA</td>
<td>-5 V @ 50 mA</td>
<td>SP8T</td>
</tr>
<tr>
<td>P9T-500M40G-60-R-55-292FF-OPT1222</td>
<td>0.5 - 40</td>
<td>6.5</td>
<td>60</td>
<td>100 ns</td>
<td>+5 V @ 450 mA</td>
<td>-5 V @ 75 mA</td>
<td>SP9T</td>
</tr>
<tr>
<td>P12T-0R5G18G-60-T-SFF</td>
<td>0.5 - 18</td>
<td>5</td>
<td>60</td>
<td>100 ns</td>
<td>+5 V @ 300 mA</td>
<td>-5 V @ 150 mA</td>
<td>SP12T</td>
</tr>
<tr>
<td>P16T-100M50G-100-T-DEC</td>
<td>0.1 - 50</td>
<td>18</td>
<td>70</td>
<td>170 ns</td>
<td>+5 V @ 1100 mA</td>
<td>-12 V @ 720 mA</td>
<td>SP16T</td>
</tr>
<tr>
<td>P16T-100M52G-100-T-DEC</td>
<td>0.1 - 52</td>
<td>18</td>
<td>100</td>
<td>100 ns</td>
<td>+5 V @ 1100 mA</td>
<td>-12 V @ 720 mA</td>
<td>SP16T</td>
</tr>
<tr>
<td>P20T-7G18G-80-T-515-SFF-SP</td>
<td>7 - 18</td>
<td>5</td>
<td>80</td>
<td>250 ns</td>
<td>+5 V @ 500 mA</td>
<td>-5 V @ 200 mA</td>
<td>SP20T</td>
</tr>
<tr>
<td>P32T-0R5G18G-60-T-SFF</td>
<td>0.5 - 18</td>
<td>9.5</td>
<td>60</td>
<td>100 ns</td>
<td>+5 V @ 1450 mA</td>
<td>-5 V @ 20 mA</td>
<td>SP32T</td>
</tr>
</tbody>
</table>

Dimensions

- **Configuration:** (Inches)
 - **Size:** 1.2” x 1.25” x 0.4”
 - **Connectors:** 2.92mm (F)

- **Configuration:** (Inches)
 - **Size:** 1.2” x 1.3” x 0.5”
 - **Connectors:** 2.4mm (F)

- **Configuration:** (Inches)
 - **Size:** 1.5” x 1.5” x 0.7”
 - **Connectors:** SMA (F)

- **Configuration:** (Inches)
 - **Size:** 4.5” x 1.5” x 0.4”
 - **Connectors:** SMA (F)

- **Configuration:** (Inches)
 - **Size:** 8.0” x 3.0” x 0.65”
 - **Connectors:** SMA (F)

West Coast Operation:
4921 Robert J. Mathews Pkwy, Suite 1
El Dorado Hills, CA 95762 USA
Tel: 916-542-1401, Fax: 916-265-2597

East Coast Operation:
7311-F Grove Road
Frederick, MD 21704 USA
Tel: 301-662-5019, Fax: 301-662-1731

sales@pmi-rf.com • www.pmi-rf.com

ISO9001-2008 REGISTERED
new models with an operating frequency range from 26.5 GHz to 67 GHz. Additional features include SMA, 2.92mm, 2.4mm and 1.85mm connectors, power handling capability up to 20W(CW) as well as 2-port and 4-port model options. These power splitters offer low insertion loss and very good return loss, along with being available quickly, which is ideal for initial proof-of-concept testing and prototype builds. These RF splitters are ideal for telecom carriers, cell phone, contract and defense manufacturers, labs and research institutes.

Pasternack
pasternack.com

Gate Driver
Richardson RFPD announced availability and full design support capabilities for a new gate driver integrated circuit from Power Integrations, Inc. The SIC1182K SCALE-iDriver™ is a high-reliability, single-channel silicon carbide (SiC) MOSFET gate driver that delivers the industry-leading peak-output gate current without an external boost stage. The new device is available in an eSOP-R16B package. Reinforced galvanic isolation is provided by Power Integrations’ robust solid insulator FluxLink™ technology. Up to +/-8 A peak output drive current enables the product to drive devices with nominal currents of up to 600 A (typical).
Richardson RFPD
richardsonrfpd.com

Power Divider
Response Microwave announced a new 1-40GHz, 2-way ultra-broadband power divider for lab and both military and telecom specific product platform use.

The unit operates over the 1-40GHz range. Electrical performance offers insertion loss of 1.2dB max, VSWR of 1.7:1 max and isolation of 15 dB min. Unit offers phase unbalance of +/-8° max and amplitude imbalance of 0.5dB max. Impedance value is 50Ω. Power handling is 20W CW forward and 0.2W CW reverse. Package size is 78mm x 26mm x 12.7mm, plus connectors.
Response Microwave
responsemicrowave.com

Featured Products

Pin Diode Switches to 18 GHz

Absorptive • Reflective • Custom Designs

16-Way, 0.5-10 GHz
Wideband Absorptive
Isolation: 50 dB
Insertion Loss: 5.2 dB

SP4T Pin Diode, 0.3-16 GHz
Reflective
Isolation: 55 dB
Insertion Loss: 3.2 dB

SP3T Broadband, 0.3-18 GHz
Reflective
Isolation: 55 dB
Insertion Loss: 4 dB

SPDT 0.3-18 GHz Switch
Absorptive
Isolation: 60 dB
Insertion Loss: 2.5 dB

Get info at www.HFeLink.com
Coaxial Adapters, Amplifiers, Attenuators, Couplers, Splitters, Terminations & Test Cables

Breaking Through Barriers to the Next Generation of Wireless Applications

Mini-Circuits®

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com 566 Rev F
An Analytical Model of Quad Cable to 1 GHz: Part Two

By Kenneth S. Schneider

Ed. Note: Part one of this article published in the June 2019 issue of High Frequency Electronics.

Considering Figures 3 a-d it is evident that with respect to frequency, “f”, |ELFEXT (f, X)| dB can be partitioned into 4 segments- a Low Frequency Segment, an Intermediate Frequency Segment, a High Frequency Segment and Very High Frequency Segment. The Low Frequency Segment extends from 0 Hz to FL MHz- This exact boundary is somewhat arbitrary and loosely dependent upon the length “X.” However, it is approximately 1 MHz. It is typically characterized at short lengths- e.g. 66 m- by the presence of some resonant notches and ripples and at higher lengths by continuous convex curvature. The derivative of |ELFEXT (f, X)| dB with respect of “f” in the Low Frequency segment is certainly not constant but if it were to be “roughly” approximated it would be 10 dB per decade. The crosstalk mechanism in this segment is probably a combination of both capacitive and inductive coupling. The Intermediate Frequency Segment extends from FL MHz up to a boundary frequency of FI MHz. This boundary frequency depends “loosely” on the length, “X.” It can be approximated-for the range of lengths of interest here- at 60 MHz. Again, the derivative of |ELFEXT (f, X)| with respect of “f” in the Intermediate Frequency segment is not constant. It tends to be high at the low end of this frequency range but “then settles out” and can be well approximated by 20 dB per decade for most of this segment. It is this behavior which has been modelled in [3]. This behavior indicates that capacitive coupling dominates as the cause of the crosstalk coupling in this frequency range. The High Frequency Segment extends from FI MHz to FH MHz. Again, the boundary frequency FH MHz depends “loosely” on the length “X”- decreasing with increasing “X.” It varies from about 100 MHz to 200 MHz for the lengths of interest in the model. It can be approximated by 150 MHz. The derivative of |ELFEXT (f, X)| dB with respect of “f” in the High Frequency segment is certainly not constant but “close” to it though slowly increasing. It can be well approximated by 40 dB per decade for most of this segment. Though this “exact” value is somewhat arbitrary and just indicates a significant “slope discontinuity” in the “straight line approximations” to these segments. The Intermediate Frequency Segment and the High Frequency Segment illustrate what has been referred to as the “Dual Slope Effect.” But, as is evident from these figures this is a very simplistic-if not crude-way of describing what is clearly a very complex phenomenon. Computational experiments performed in the modelling indicate that this “slope discontinuity” is directly related to the frequency dependence of the conductivity and to the presence of the periodic twists in the cables. There are “ripples” evident at the lower lengths see for example the region between 100 MHz and 200 MHz for 66 m are due to the periodic twists as has been made clear from computational experiments. These seem to move to the high frequencies with greater loop lengths. All of this indicates a very complex interaction of different coupling mechanisms. These most likely include capacitive coupling, inductive coupling complicated by the twisting. The Very High Frequency Segment begins at FH MHz and extends upward from that to 1 GHz and beyond. Here |ELFEXT (f, X)| dB versus “f” appears to “oscillate” in an aperiodic manner often going well above 0 dB. The oscillations seem to follow the pattern like a “downward Chirp Radar
waveform—with a frequency parameter rather than a time parameter—and with a decreasing amplitude. However, this “extreme” aperiodicity is a “little deceptive” as the abscissa is logarithmic. Studies performed in developing the model indicate that this is principally caused by the aperiodic twists and to a much lesser extent by the increase in the imaginary component of the dielectric constant. Notice at the extreme right-hand side of each of the figures—close to 1 GHz. This behavior seems “to burst out again.” Computations indicate that this is “roughly” repetitive in with increasing frequency. The presence of this behavior with \(|\text{ELFEXT}|\) repeatedly going through 0 dB may well affect the cancellation of FEXT through Vectoring—which is a key processing technique used in the development of the emerging broadband technologies. Furthermore, the oscillatory behavior is like paired echo distortion. If it gives rise to “early” and “late” echoes of the FEXT this may also affect the cancellation of FEXT through Vectoring—there may be loss of synchronization of the FEXT with the direct path signals.

Clearly from considering Figure 3 a-d FL, FI and FH vary “loosely” with loop length. But, for the purposes of the continued development of the model herein they are approximated as follows:

\[
\begin{align*}
F_L & \approx 1 \text{ MHz}, \quad F_I \approx 60 \text{ MHz}. \\
F_H & \approx 150 \text{ MHz}
\end{align*}
\]

(16)

Discussion now will be directed at the variation-of \(|\text{ELFEXT}(f, X)|\) dB with “X” at different fixed frequencies, “f.” This is illustrated by Figure 4 which covers the range of lengths which are of interest in the emerging broadband communication technologies—i.e. up to several 100 m. This is also shown for a wide range of fixed frequencies ranging from 1 MHz to 100 MHz. The range of frequencies has been limited to be less than FH MHz—the beginning of the “Very High Frequency Segment”—because variation with respect to “X” with the oscillatory behavior is really not meaningful.

Considering Figure 4, and the computational analyses underlying it indicates that at the lower lengths, “X” there is almost a linear dependence of \(|\text{ELFEXT}|\) on “X” and therefore a logarithmic dependence of \(|\text{ELFEXT}|\) dB on “X.” However, as “X” increases this logarithmic dependence of \(|\text{ELFEXT}|\) dB on “X” gives way to \(|\text{ELFEXT}|\) dB approaching a fixed asymptote—the value of which depends upon the fixed frequency. Figure 4 indicates that “the neighborhood” of this asymptote is reached generally when “X” is in the interval from 400 m to 500 m.

The almost linear dependence upon X at the lower values of “X” has been observed and expected at communica-
tion technologies which have been of interest, in the past, at the lower frequencies-below 30 MHz. It is usually readily explained as follows. If the transmission line model is considered from the point of view of “Circuit Theory” with the crosstalk effected by capacitive coupling—the dominant mechanism at these frequencies—then what you have are a continuing number of capacitors in parallel—increase with “X.” As “X” increases the number of capacitors increases and the FEXT would be expected to grow linearly with “X.” This has been noted in the technical literature. The great

Figure 3 • |ELFEXT (f, X)| dB vs frequency in Hz for a. X = 66 m, b: X = 100 m, c: X= 200 m, d: 400 m.
Industry-Leading Design Capability

CUSTOM FILTERS

Technologies to Fit Almost Any Need!

- Fast turnaround
- Support through the life of your system

Send Us Your Specs for a Fast Response
Bell Telephone Laboratories engineer, G. A. Campbell noted this in the application to the twisted pair cable loops of the telephone system [8]. Work on similar but different problems has also noted this [9], [10], [11] though not in the context of twists in the cable.

Now what is very interesting in observing Figure 4 is that the “linear dependence” (logarithmic in dB) “disappears.” The variation with “X” instead appears to follow the linear dependence up to some threshold length, “X₀,” in the 400 m to 500 m interval and the for lengths X > X₀ rapidly approaches an asymptote.” This asymptotic behavior is consistent with the modeling approach obtained through simulations and reported by van den Brink [4] and extended by van den Brink, H. Verbueken, J. Maes. For purposes of continuing the modeling in the sequel the following specification will be made:

\[X₀ = \text{400 m} \quad \text{(17)} \]

Computational experiments have been carried out with the model being developed which appear to indicate that this deviation of the dependence of \(|\text{ELFEXT}|\) dB on “X” from logarithmic to asymptotic behavior is related to the length of the twist in the Quad Cable. Figure 5 illustrates this and indicates \(|\text{ELFEXT}|\) dB versus “X” at a fixed frequency of 50 MHz for 3 different twist lengths. Note that as the twist length gets shorter and shorter then tendency to deviate from the logarithmic behavior to the asymptotic behavior gets more pronounced.

The characteristics which have been noted in the above discussion allow the following formulae to be used as a reasonable approximation to \(|\text{ELFEXT}(f, X)|\) dB which can be used for further modeling and simulation purposes. These formulae follow the trend lines indicated and for simplicity do not include the resonant effects - except for the Very High Frequency segment where the oscillatory behavior has been represented.

\[|\text{ELFEXT}(f, X)| \text{ dB} \approx [K\text{FEXT}] \text{ dB} + \Gamma_x (f, X) \text{ dB} + \Gamma_f (f, X) \text{ dB} \quad \text{(18)} \]

Here \(\Gamma_x (X) \text{ dB}\) principally represents the dependence upon “X” and is defined by:

\[\Gamma_x (f, X) \text{ dB} = 20 \log[X] \text{ for } X \leq X₀ \]
\[\Gamma_x (f, X) \text{ dB} = 20 \log[X₀] \text{ for } X > X₀ \quad \text{(19)} \]

where \(X₀\) is given by (17).

\(\Gamma_f (f, X) \text{ dB}\) principally represents the dependence upon “f” and is given below with \(F_L, F_I\) and \(F_H\) given by (16):

Low Frequency Segment

\[\Gamma_f (f, X) \text{ dB} = 10 \log(f) \text{ for } f \leq F_L \quad \text{(20)} \]
Intermediate Frequency Segment

\[\Gamma_f (f, X) \text{ dB} = \Gamma (FL, X) \text{ dB} + 20 \log (f) \text{ for } FL < f \leq FL \]
Where the first term on the right-hand side comes from (19)

High Frequency Segment

\[\Gamma_f (f, X) \text{ dB} = \Gamma (FL, X) \text{ dB} + 40 \log (f) \text{ for } FL < f \leq FH \]
Where the first terms on the right-hand side comes from (21).

Very High Frequency Segment

\[f (f, X) \text{ dB} = (FH, X) \text{ dB} + A \Gamma \sin (2 \pi f \Gamma) \text{ for } f > FH \]
Where \(A \Gamma = 40 \ e^{- (fM - 150)/100} \) and \(\lambda \Gamma = 4 \)

\[[K_{FEXT}] \text{ dB} = -165.6505 \]

The value of \([K_{FEXT}]\text{ dB}\) corresponds to \(K_{FEXT} = 5.59 \times 10^{-9}\). This is higher than the value used in [3] which is \(8.80 \times 10^{-11}\). However, a difference is to be expected as [3] deals with unshielded twisted pair cables and the current modelling effort is directed at Quad Cables. As noted the above formulas are approximations. They are a simplification of quite complex behavior- this is especially true with respect to the specifications of \(A \Gamma\) and \(\lambda \Gamma\). The intent was to put in these in a form so that they can be readily applied in simulation efforts. However, they do capture the characterizations observed from the exact computational results.

Consideration is now given to the phase \(\Phi_{ik}(f, X)\) with respect to “X” and “f.” \(\Phi_{ik}(f, X)\) has not received adequate attention in modelling efforts directed at other cable types such as those presented in [3] and [6]. van den Brink does discuss it for Quad Cable in [4]- though quite tersely.

\(\Phi_{ik}(f, X)\) has been computed using the analytical approach of the mathematical development which is the basis of the model presented. Figure 6 a, b, c, d, and e illustrate \(\Phi_{ik}(f, X)\) (degrees) vs. frequency (Hz) for a range of exposure lengths “X.”

In considering the examples of the phase variation with frequency shown in Figure 6 they all have similar characteristics. The phase variation appears constant at an average value of approximately -50 degrees up until about the
Quad Cable

beginning to the Very High Frequency Segment—slightly above 100 MHz. At this point it becomes oscillatory—very similar to the |ELFEXT| dB behavior. Note again that the abscissa in Figure 6 is in logarithmic units and this deceptively makes the variation look like a decreasing period—yet this behavior is interesting. It indicates that in this Very High Frequency Segment the phase seems to oscillate between approximately 180 degrees and -180 degrees. Though this again may be deceptive because -180 degrees is effectively 180 degrees and once could say that the phase is at 180 degrees. The origin of this behavior in the Very High Frequency Segment is a subject for future study.

This parameter has been addressed for the case of Binders of Unshielded Twisted Pair cable using a novel statistical approach in [3]. However, this required the collection of a massive amount of experimental data to estimate the underlying statistical distribution. Such data is currently not available for the case of interest here—dealing with Quad Cables. With the development of the present model focused on Quad Cables a deterministic “geometric approach” is employed. It should be noted that Strobel also used a geometric approach as reported in Appendix I of [7]- which though not readily evident does have some similarities.

The geometric approach used herein rests on 3 assumptions which will be justified. However, it must be noted that this approach follows that of [3] in ignoring any frequency dependence of ‘θik ‘. This is a necessary simplification...
as it is beyond the range of issues addressed by the modelling effort presented. Assumption #1 - Initially all Quads are close packed with each Quad located on the lattice points of a diamond shaped grid. Such a grid is illustrated in Figure 7. The coordinates of the lower boundary are (1,0) ... (1,15). The coordinates of the left boundary are (0,1) ... (0,14). The coordinates of other points can be discerned from this. The diamond shaped grid is used because its symmetry mirrors the symmetry of a Quad and this is convenient for descriptive purposes.

The placement of individual Quad Cables on such a diamond grid is illustrated in Figure 8. Here 4 cables are shown. The location of each Quad is the coordinate of its center point. Thus, the location of Q-1 is the coordinate (1,1). The location of Q-2 is (2,2). Other Quad Cables will be so identified. It is to be noted that in Figure 3 the 2 Quad Cables, Q-1 and Q-2 are “adjacent”- they are as close as possible.

A configuration of 8 Quad Cables close packed on the diamond grid is illustrated in Figure 9.

The coordinates of these 8 cables- corresponding to coordinates of their center points- are given by: Q-1 (1,1), Q-2 (2,2), Q-3 (3,1), Q-4 (1,3), Q-5 (4,2), Q-6 (3,3), Q-7 (2,4), Q-8 (5,3)

The justification for this assumption is the observation of actual cable types used. Figure 10 shows photographs (obtained from a collection of photos on the Internet) actual Quad Cable Binders used for telephone loops. As indicated they are all “pressed together”- thus a close packed assumption can be justified. Placing each on the lattice point of a rectangular grid is a reasonable simplification that allows for analysis. Assumption #2 - the geometric arrangement remains the same over the entire length of the cable- or at least over the length of a segment for which the full transmission line behavior is being considered. This assumption is justified by the observation that any action that does not compromise the continuity of a cable pair should not affect the topological closeness from one end the other. In other words, a twisting of the entire Binder should not affect the closeness. Assumption #3 - While initially all Quads are close packed as time proceeds 3 principal causes will allow the distance between the Quads to increase. These causes are thermal transients- heating and cooling- naturally occurring mechanical vibrations- due to wind,
Quad Cable

rain and other weather effects- and mechanical vibrations due to vehicular traffic, construction and handling by technicians and others. Essentially, it is assumed that there will be a dilation of the close packing. There will be a slackening of the close packed configuration. This is very reminiscent of effects related to the Second Law of Thermodynamics. In a way, it may be related to the statistical approach used in [3]. However, further discussion of this is beyond the present contribution. Furthermore, this assumed dilations allow the results of the model to be applied to situations where the close packing is not rigidly carried out on a diamond grid but is limited by other physical constraints - for example requiring the individual Quads to be placed on the circumferences of concentric circles - thus increasing average distance between some.

Given these 3 Assumptions the following general points are made: FEXT is caused by capacitive imbalance between 2 pairs. When the pairs are in the same Quad this is termed “Intra-Quad FEXT.” When the pairs are in different Quads this is termed “Inter-Quad FEXT.” This capacitive imbalance itself is driven by the actual value of the capacitances between the individual wires. If this, did not exist then there would be no imbalance and no FEXT. The capacitance is expected to be maximum when the pairs are as close as possible -as in the same Quad- “Intra-Quad FEXT.” For “Inter-Quad FEXT” it is reasonable to assume that the capacitance is maximum when the corresponding pairs are adjacent on the Grid shown in the above Figure 7. This corresponds to a Euclidean Distance in Figure 7 = 1. The capacitance decreases between 2 cable pairs with the Euclidean Distance. However, the capacitance also decreases between 2 cable pairs if the area through which the Electric Flux protrudes is reduced. This may be caused by blockage if other cable pairs are between the 2 cable pairs of interest. If 2 cable pairs are adjacent, then there is no blockage. On the other hand, if 2 cable pairs are at the opposite far vertices of the square Grid shown in the above Figures then there is maximum blockage.

Let “Cadj” be the capacitance between 2 pairs which are in different Quads, but which are adjacent. Let “C” be the capacitance between 2 cable pairs of interest but each in a different Quad. Then:

\[C = (1 + \chi) \times C_{adj} / \text{Euclidean Distance} \]

(25)

The division by Euclidean Distance corresponding to the reduced capacitance by separation. The first factor on the right side of (25) corresponds to the “blockage.” The term “\(\chi \) will = 1 if the 2 cable pairs are adjacent and there is no blockage. This is somewhat arbitrary- another value can be chosen. But, it is not unreasonable. Otherwise will increase with Euclidean Distance. For purposes of this present model it is not unreasonable to have:

\[\chi = \text{Euclidean Distance} \]

(26)

Proceeding on this basis, ignoring the “1” above and substituting (16) brings:

\[C = [C_{adj}] / [\text{Euclidean Distance}]^2 \]

(27)

and \(C/[C_{adj}] = 1/[\text{Euclidean Distance}]^2 \)

This is “almost” the “Amplitude Offset “factor, “\(\theta_{ij} \).” What is needed is to account for the “distance dilation” associated with Assumption 3. This is done through the factor “KD” – taken to be a positive number and

\[\theta_{ij} = 1/(K_D [\text{Euclidean Distance between “i” and “j”}])^2 \]

(28)

\(K_D \) is taken = 2. This “dilates” the Euclidean distance. Basically, we are assuming that each of the components causing the dilation- men-
ATC High RF Power Capacitor Assemblies

Excellent for Low Frequency, High RF Power Applications

- Extended Capacitance
 Up to 36,000 pF

- High Operating Voltage
 Parallel to 7200 WVDC
 Series to 20,000 WVDC

- High Operating Current
 Up to 130 Amps per Assembly

- Enhanced Reliability
 100% Pre-tested

Performance Advantages:
- Ultra-low ESR
- Q > 10,000 @ 1 MHz
- Achieve Non-standard Values and Ultra-tight Tolerances
- Custom Lead Configurations
- Reduced Assembly Steps / Handling Costs

Typical Applications:
- HF/RF Power Amplifiers
- Semiconductor Manufacturing Equipment
- Medical Electronics (MRI)
- Broadcast Transmitters
- Antenna Matching Networks
- Inductive Heating

www.atceramics.com
mentioned in Assumption #3- provides a dilation with the sum totaling to "2." While this is an assumed value it is also a reasonable value. Because of mechanical constraints- such as the shield and any jacketing- the dilation must be limited-where “Euclidean Distance” refers to the “Euclidean Distance” between the separate Quads corresponding to loops “i” and “j” on the grid of Figure 6. When expressed in dB this is:

$$[\theta_{ij}] \text{ dB} = -40 \log[\text{Euclidean Distance between "i" and "j"] - 12$$

(29)

When considering a configuration of Quad Cables in a Binder- they are considered as “close packed”- with each Quad covering an empty “diamond” shape within the grid. For purposes of this model when determining the actual placement of the Quad Cables on the grid shown in Figure 6- this should be done in the following way: Place the first Quad at the lattice point given by the coordinates (1, 1). For each additional Quad- place it at that currently empty lattice point with coordinates so that the Euclidean distance between it and (1, 1) is at a minimum. The empty lattice point must allow the placement of a Quad so that it is fully within the lattice. By way of example, the coordinate (2, 2) would be allowed but not (0, 3). The empty lattice point must be such that the Quad which has it as its center does not overlap any other Quad. By way of example the coordinate (2, 2) would be allowed but not (1, 2). This should always be done in this manner to allow consistency when computations are carried out.

For the example of the close packed 8 Quad Cables shown in Figure 8 it is interesting to compute the range of the Amplitude Offset. Note: this corresponds to 16 pairs with 2 pairs per Quad Cable. The greatest offset would be between cables Q-1 and Q-8. The Euclidean Distance here would be 20 $\sqrt{5}$ or 4.47. This corresponds to an Amplitude Offset of 26 dB. This is in the same range of values as obtained with the ATIS model [3] though a little less. But, this is to be expected. We are dealing here with 8 Quads- 16 cable pairs not the 25 cable pairs of the ATIS Model Binder. This also is representative of the measured data provided in [5]. Using the procedure described above an example Amplitude Offset Matrix $[\theta_{ij}] \text{ dB}$ corresponding to 4 Quad Cables- 8 pairs- is shown in Table 2 where each row/column number corresponds to a Pair number. These 8 pairs point must be such that the Quad which has it as its center does not overlap any other Quad. By way of example the coordinate (2, 2) would be allowed but not (1, 2). This should always be done in this manner to allow consistency when computations are carried out.

For the example of the close packed 8 Quad Cables shown in Figure 8 it is interesting to compute the range of the Amplitude Offset. Note: this corresponds to 16 pairs with 2 pairs per Quad Cable. The greatest offset would be between cables Q-1 and Q-8. The Euclidean Distance here would be 20 $\sqrt{5}$ or 4.47. This corresponds to an Amplitude Offset of 26 dB. This is in the same range of values as obtained with the ATIS model [3] though a little less. But, this is to be expected. We are dealing here with 8 Quads- 16 cable pairs not the 25 cable pairs of the ATIS Model Binder. This also is representative of the measured data provided in [5]. Using the procedure described above an example Amplitude Offset Matrix $[\theta_{ij}] \text{ dB}$ corresponding to 4 Quad Cables- 8 pairs- is shown in Table 2 where each row/column number corresponds to a Pair number. These 8 pairs point must be such that the Quad which has it as its center does not overlap any other Quad. By way of example the coordinate (2, 2) would be allowed but not (1, 2). This should always be done in this manner to allow consistency when computations are carried out.

It is worthwhile to compare the values in Table 2 with comparable values obtained by the statistical approach used in [3]. The upper left 5 x 5 submatrix of the Amplitude Offset Matrix in [3] is provided in Table 5- though this corresponded to Unshielded Twisted Pair cables not Quad Cables. This Amplitude Offset Matrix in [3] is essentially “slightly asymmetric”- though there is a procedure for converting it to a symmetric matrix. Nonetheless, it is best to consider the “slightly asymmetric” version. Comparing the matrices in Table 2 and Table 3 it is evident that the values are in the same general range-though with those of Table 5 trending higher than those of Table 2. This provides credibility that both approaches are coming up with reasonable- though not identical- results given limits to the essential knowledge of the problem.

It is also worthwhile noting that the average Amplitude Offset in Table 4 is -23.5417 dB.

“Ψ_{ik} “

Using the approximation for $\Phi_{ik} (f, X)$ given in degrees- this can be converted to radians by multiplying by $\pi/180$ to obtain $\Phi_{Rik} (f, X)$. From this is obtained $\Psi_{ik} = d + \Phi_{Rik} (f, X)$, where β is approximated by (Group Delay)f with “Group Delay” given a constant in (5).

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-18.06</td>
<td>-18.06</td>
</tr>
<tr>
<td>-18.06</td>
<td>-18.06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-18.06</td>
<td>-18.06</td>
</tr>
<tr>
<td>-18.06</td>
<td>-18.06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-33</td>
<td>-33</td>
<td>-18.06</td>
<td>-18.06</td>
</tr>
<tr>
<td>-33</td>
<td>-33</td>
<td>-18.06</td>
<td>-18.06</td>
</tr>
<tr>
<td>-18.06</td>
<td>-18.06</td>
<td>-24.08</td>
<td>-24.08</td>
</tr>
<tr>
<td>-18.06</td>
<td>-18.06</td>
<td>-24.08</td>
<td>-24.08</td>
</tr>
</tbody>
</table>

Table 2 • Example $[\theta_{ij}] \text{ dB}$ for 4 Quad Cables- 8 Pairs
3. MODEL COMPARISON WITH EXPERIMENTAL MEASUREMENTS

In concluding, a brief comparison is made of the predictions of the theoretical model to experimental measurements made of an actual PE4D-ALT used by Swisscom [12]. In the interest of conciseness attention will only be directed at the dependence of $|\text{ELFEXT}|$ dB on frequency. Comparisons with respect the dependence of $|\text{ELFEXT}|$ on exposure length, with respect to the phase of ELFEXT, direct path attenuation and Group Delay, and the Amplitude Offset are of interest but will not be dealt with. Figure 11 shows an intra-quad ELFEXT measurement of a PE4D-ALT cable of 66m length consisting of 10 quads with wire diameter of 0.6mm. The measurement is compared with the ELFEXT calculation based on the parameter values assumed in this paper. Calculated and measured curves show a great similarity in shape but are not completely aligned e.g. the dips do not coincide exactly. This can be explained by the fact that the model parameter used were not fitted with the measurements. This would have to be done in a next step to get optimized parameter values. In addition, Figure 11 shows also the four-segment model developed in this paper, which was explicitly fitted to the measurement data shown in the same figure.

Acknowledgements

Mr. Marcel Reitmann of Swisscom was very helpful in providing experimental measurements for validating the analytical model. Mr. Seth Stowell and Dr. Knut Kongelbeck assisted with carrying out difficult computational experiments. Interaction with Professor (Emeritus) Dante Youla (PINY- New York University) was of great value. He pro-

| -13.6823 | -15.1213 | -10.6057 | -16.8391 | 0 |

Table 3 • Submatrix of $[\theta_{ij}]$ dB for twisted pair cables in [3]

Figure 11 • Swisscom intra-quad $|\text{ELFEXT}|$ measurement of PE4D-ALT 10x4x0.6mm cable of 66m length vs. calculation and model.
Quad Cable

vided the theoretical foundation for this modelling effort and invaluable insight into the many issues arising as it was carried out. Professor (Emeritus) John Murray (SUNY-Stonybrook) aided in the expansion of this theoretical foundation. The text and illustration editing provided by Mrs. Victoria Twomey was invaluable.

References

13. TR-285 “Broadband Copper Cable Models,” Table 3., Issue 1 Amendment 1, March 2017.

About the Author

Kenneth S. Schneider is the CEO and founder of Telebyte, Inc., which is focused on the development, manufacture and marketing of test equipment for the broadband telecommunications market. He received the BS, M. Eng. (Elect) and PhD degrees all from Cornell University. Dr. Schneider has been active in the development of communications technology throughout his career. This included work as a member of technical staff at Hughes Aircraft Company, M.I.T. Lincoln Laboratory, and Network Analysis Corporation. He has also taught communication theory at the Polytechnic Institute of New York. He has published more than 100 technical papers, holds three patents, and is the recipient of the IEEE (Long Island Section) Harold Wheeler award.
Insulated Wire’s laminated EPTFE dielectric provides industry leading attenuation performance which translates to **MAXIMUM power handling** capability! IW’s range of high power coax cable and assemblies ensures **low loss** and **reliable power transmission** in your application:

Low loss/phase stable:
- **2801** 1.9KW (c.w) @ 1 GHz, 450W @ 18 GHz
- **4806** 17KW @ 13.56 MHz, 3.2KW (c.w) @ 1 GHz
 2KW (c.w) @ 2.45 GHz

And introducing:
- **7506** 5KW (c.w) @ 1 GHz

In the **Re-Flex™** family:
- **RF250** 1KW @ 1 GHz

RF250 is a Re-Flexible alternative to RG401 that **eliminates semi-rigid failure modes** and **aids manufacturability** being easily hand-formable, with a double shielded design to ensure **signal integrity**.

C, SC, LC, HN, 7/16, 1 5/8” & 7/8” EIA Flange designs available, other sizes/styles in development, contact us or your local representative with your requirements!

Typical applications include EMC compliance testing, Semiconductor fabrication, Broadcast transmission systems & High Power Amplifiers.

Talk to us or your local representative about how you can get industry leading attenuation performance with MAXIMUM power handling capability!

Multi-Unit Testbed for Emulating RF Environments

The first compact, modular, isolated system for testing wireless devices without an anechoic chamber.

Companies involved in designing and building products and systems for wireless protocols are all too familiar with the problem of economically testing their electronics in a repeatable RF environment. Open air testing is time consuming and unreliable. Repeat visits to third-party test facilities can cause scheduling delays and high costs.

With the Multi-Unit Testbed, manufacturers of wireless products for 5G cellular networks and handsets, Wi-Fi, Bluetooth, Zigbee and other wireless protocols can lower test costs by as much as 90%, vs. third-party testing. Other applications include: robotics, tele-medicine, military communications and drones.

Micro Lambda Wireless announced increased production of its high-performance, low phase noise benchtop frequency synthesizers. In sync with its evolving catalog of YIG synthesizer components, the custom-tuned benchtop YIG synthesizer line now offers RF and microwave designers working at frequencies up to 20 GHz the chance to upgrade their test benches with the best technology at their specific bands.

Offering up to -125 dBc/Hz @ 10 kHz offset phase noise at a carrier frequency of 10 GHz, these frequency synthesizers set the standard for phase noise performance. They are also capable of tuning speeds up to 50 uS over wide bands, and offer output power levels of +15 dBm, with power leveling in frequency bands up to 10 GHz.

Micro Lambda Wireless
microlambdawireless.com
Ultra-Wideband Stripline Couplers

0.3-40 GHz

- Outstanding Directivity
- Industry Leading Bandwidth, 0.5-40 GHz in a single model!
Product Highlights

17-40 GHz Block Up and Down Converters

Norden Millimeter's line of broader band block up and down converters are used for extending the frequency range of existing ELINT, COMINT, RADAR, and Testing systems. These converters cover the 17-26.5 GHz and 25.5-40 GHz bands with a full 1 GHz overlap with existing 18GHz systems and at the transition between bands.

The Upconverter has independent input IF and output RF attenuation for over 60 dB of gain control. These attenuators are controlled by parallel attenuation bits on a rear power/control multi-pin connector. Both converters offer best in class spur free dynamic range. The units use a single frequency external LO signal of 14.4 GHz.

Norden Millimeter
nordengroup.com

2.92mm Precision In-Series Adapters

2.92mm Precision In-Series Adapters: SGMC Microwave's 2.92mm series are precision grade connectors designed for use with microwave applications requiring excellent performance up to 40 GHz. SGMC offers an extensive line of 2.92mm precision adapters, receptacles, and cable connectors for various semi-rigid and flexible coaxial cables. Special designs are also available upon request.

SGMC Microwave
sgmcmicrowave.com

Comb Generators and More

Herotek has been a quality supplier of RF and Microwave components since 1982. Herotek is a broad-based, high technology company supplying parts for the Military, Industrial and Commercial markets with designs from DC to 75 GHz. It offers standard products as well as thousands of custom designs, and is happy to match existing products. Herotek offers Detectors, Comb Generators, Limiters, Switches, GaAsFet Amplifiers (Broadband, Low Noise, and Power) and integrated subsystems of many types, including up and down converters, multipliers, harmonic mixers, and transceivers.

Herotek
herotek.com

COMB and IMPULSE GENERATORS

100 MHz to 75 GHz

"High Frequency Electronics"
VNA Extension Modules

OML offers three configurations of the VNA Frequency Extension Module to expand your existing Keysight or Anritsu vector network analyzer to millimeter frequencies: T/R, T, and S. Depending on your S-parameter needs, refer to the following block diagrams to configure our module(s) with your existing VNA test port(s). With flexible ordering configurations, we can satisfy your preferences for economical and high performance needs.

OML
omlininc.com

mmWave Solution

Analog Devices introduced a solution for millimeter wave (mmWave) 5G with the highest available level of integration to reduce design requirements and complexity in the next generation of cellular network infrastructure. The new mmWave 5G chipset includes the 16-channel ADMV4821 dual/single polarization beamformer IC, 16-channel ADMV4801 single-polarization beamformer IC and the ADMV1017 mmWave UDC.

Analog Devices
analog.com
Product Highlights

VNA: 100 kHz to 40 GHz

The new R&S ZNBT40 from Rohde & Schwarz is the first vector network analyzer (VNA) with a broad frequency range from 100 kHz to 40 GHz and up to 24 integrated test ports. Developers can use it for applications such as measurements on 5G antenna arrays. The multiport architecture is not only advantageous for tests on multiport components, but also for simultaneous testing of multiple DUTs in production to boost throughput. Rohde & Schwarz ensures specified performance on up to 24 test ports with the R&S ZNBT40. Also new is the R&S ZNBT26 for measurements up to 26.5 GHz.

Rohde & Schwarz
rohde-schwarz.com

MMIC Mixer

The MT3L-0113HSM is a lower IF variant of our popular MT3H-0113HSM triple-balanced MMIC mixer. It offers similar linearity performance to our T3-07, T3-12, and MT3-0113CQG mixers with smaller size, better availability, and a lower price. Greater than +30dBm IIP3 can be achieved when paired with our ADM series of squarewave generating LO driver amplifiers. Sine-wave operation is also supported. RF and LO cover 1.5 to 13 GHz, and the IF is 0.25 to 5 GHz. With 40 dB of port-to-port isolation and over 60 dBc spurious suppression, this latest entry to the T3 product family is ideal for high performance radar, radio and test applications. MT3L-0113HSM is available in a surface-mount QFN or connectorized evaluation module.

Marki Microwave
markimicrowave.com
When Everything Depends On Precision, You Can Depend On Delta!

SMP - SMPM - SMPS
High Performance Connectors to 65 GHz

Delta Electronics Mfg. Corp.
deltarf.com
978-927-1060
sales@deltarf.com
Discrete Power GaN HEMTs and More

AMCOM RF Transistors include Discrete Power GaN HEMTs, GaAs FET (good linearity at back-off) and GaAs pHEMT (good power density and efficiency).

AMCOM has all the expertise, manpower, space, and equipment for manufacturing state-of-the-art products. Some of our capabilities are: active device design, MMIC design, and power amplifier module design. In addition, we are experts in device/MMIC packaging, module assembly and RF/DC testing. For active devices, we either procure parts such as silicon LDMOS, or GaN HEMT, or we use a semiconductor foundry to fabricate our own proprietary device/MMIC.

AMCOM offers a variety of GaN MMICs with different power levels and operating frequencies. Our GaN MMICS are offered in different forms such as bare die and packaged. This table summarizes AMCOM’s recent releases:

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq.</th>
<th>Vd</th>
<th>Gain</th>
<th>P1dB</th>
<th>Psat</th>
<th>PAE</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM00010037WN-XX-R</td>
<td>DC-10 GHz</td>
<td>28V</td>
<td>13dB</td>
<td>30dBm</td>
<td>37dBm</td>
<td>23%</td>
<td>Packaged, Die</td>
</tr>
<tr>
<td>AM206041WN-XX-R</td>
<td>1.8-6.5 GHz</td>
<td>28V</td>
<td>30dB</td>
<td>38dBm</td>
<td>41dBm</td>
<td>20%</td>
<td>Packaged, Die</td>
</tr>
<tr>
<td>AM408041WN-XX-R</td>
<td>3.75-8.25 GHz</td>
<td>28V</td>
<td>33dB</td>
<td>38dBm</td>
<td>42dBm</td>
<td>26%</td>
<td>Packaged, Die</td>
</tr>
<tr>
<td>AM07512041WN-XX-R</td>
<td>7.5-12.5 GHz</td>
<td>28V</td>
<td>27dB</td>
<td>37.5dBm</td>
<td>41dBm</td>
<td>20%</td>
<td>Packaged, Die</td>
</tr>
</tbody>
</table>

For more detailed information please visit: www.amcomusa.com

AMCOM was established in December 1996 by a group of microwave designers experienced in both microwave circuit design and microwave device fabrication technology. It is located in Gaithersburg, Maryland, USA, about 20 miles northwest of Washington, DC.

The company has earned a reputation as a leading edge microwave design organization that includes power FETs, MMIC power amplifiers, as well as high-power amplifier modules with RF and DC connectors that are ready to be used in microwave systems. One of our specialty products is high-power, broadband, high-efficiency power amplifiers.
Circuit Board (Dk & Df) Measurements Testers

Measure Circuit Boards
Laminates
Plastic
Ceramics
Thin Sheets
0.1 - 20 GHz

ph: (610) 358-0200
www.damaskosinc.com

Waveguide Components from 2.6GHz to 110GHz
- Waveguide straight sections, bends and bellows
- Waveguide flange adapters
- Waveguide flange couplers
- Waveguide switch
- Multi-hole directional couplers
- Fixed and variable waveguide attenuators
- Variable waveguide shorts

Wenteq Microwave Corporation
1079 Hamilton Road, Suite A, Duarte, CA 91010
Phone: (626) 306-4966, Fax (626) 802-2101
Email: sales@wenteq.com, Website: www.wenteq.com

HFE’s Product Showcase Classified Advertising
Your ad will stand out when it’s displayed in our Product Showcase!
For more information, or to place your ad, please contact:
Joanne Frangides
Tel: 201-666-6698
Fax: 201-666-6698
joanne@highfrequencyelectronics.com

www.highfrequencyelectronics.com
E-Band Mixer

Spacek Labs model M80 5X2B is an E-band mixer covering the two radio bands of 71 to 76 GHz and 81 to 86 GHz. The mixer includes an integrated LO doubler, so that the customer need only supply a 39 GHz source with +16 dBm of power. Spacek Labs can also supply a phase-locked source with the assembly. The conversion loss over the band is 6 dB typ and 9 dB max, with an IF frequency range of 2 to 8 GHz. The input P1dB is 6 dBm typ, and the bias is +12 VDC at 10 mA. The RF ports is WR 12 waveguide, LO input port is 2.92mm coax connector and the IF port connector is SMA (f).

Spacek Labs
spaceklabs.com

Coaxial RF Probes

Pasternack’s extended line of coaxial RF probes now includes 4 models that deliver 10 dB maximum return loss over the broad frequency range of DC-40 GHz. These probes are offered in GS and GSG configurations with a pitch of 800 or 1500 microns and a 2.92mm interface. They are gold-plated and have compliant pogo pin contacts that allow for a wide range of probing angles. These RF coaxial probes can be used by hand, with or without a probe positioner, and can be cable mounted or mounted with Pasternack’s multi-axis probe positioner. They are ideal for signal integrity measurement, chip evaluation, coplanar waveguide, Gigabit SERDES, substrate characterization and test fixture applications.

Pasternack
pasternack.com
Continuing Engineering Education is a Must

Studies reveal that within each 3-5 year period, one-half of an engineer’s technical knowledge becomes obsolete. New graduates soon discover that university education provides only the foundation of knowledge that is realistically needed to perform well in the industry. Continued education is a must for survival in today’s competitive market. Application of modern computer-aided engineering to RF and microwave circuit and system design is vital to manufacturing products with high quality and yield. Modernization of the design laboratory and production floor is critical to maintaining a competitive edge.

A well-planned continuing education program will enable your company to meet these goals. As a recognized international leader in continuing education, Besser Associates is dedicated to serving the needs of RF and wireless professionals.

The Latest Tools and Techniques are Featured

Our instruction combines theory and practice into one complete and “user-friendly” package that attendees may apply on the job immediately. Whether it’s reviewing basics for the inexperienced, or the latest CAD techniques for more seasoned designers, Besser Associates’ courses offer meaningful education for every participant.

Our Instructors

Besser Associates instructors are recognized experts in their field. They are top-notch design engineers, skilled in both technology and the art of instructing. With an average of more than 20 years of education and practical first-hand experience, our instructors bring a wealth of training and information to the courses they present. Equally important, our trainers communicate effectively; they know how to reach both novice and veteran professionals.

Besser Associates
besserassociates.com

Get Up to Speed — Fast!

RF Technology Certification
Next Session Starts Soon! - Online

Applied RF Engineering I
Next Session Starts Soon! - Online

EMI/EMC and Signal Integrity Boot Camp
July 29 to August 2, 2019, San Diego, CA

RF Power Amplifier Design Techniques
July 29 to August 1, 2019, San Diego, CA

Cognitive Radios, Networks, & Systems for Digital Communication
September 26 to 27, 2019, San Diego, CA

5G Radio Systems and Wireless Networks
September 23 to 25, 2019, San Diego, CA

5G, mmWave Antennas: Propagation and Phased Arrays
September 26 to 27, 2019, San Diego, CA

Phased Array Radar
September 23 to 25, 2019, San Diego, CA

Radio Systems: RF Transceiver Design from Antenna to Bits & Back
November 4 to 8, 2019, San Jose, CA

www.BesserAssociates.com

Corporate Training Services

Besser Associates can provide our online and traditional classroom courses exclusively for your team. Our instructors can present almost any course from our full catalog at your domestic or international location. Contact us for more details!

www.besserassociates.com info@besserassociates.com

Get info at www.HFeLink.com
Aerospace, Defense, and More

Ducommun offers a diverse array of design, engineering and manufacturing capabilities that service the aerospace and defense market, oil & gas exploration, test and measurement, telecommunications, space and medical markets. With over 50 years of heritage in custom product solutions, the Ducommun team can support your Human Machine Interface, Motion Control Device, RF and custom electronics manufacturing needs.

Ducommun serves the avionics, communications, defense, industrial, intelligent traffic systems, medical, and test equipment markets with millimeter wave products. We design and manufacture products including amplifiers, antennas (horn and patch), mixers, oscillators, multipliers, radar sensors, industrial grade phase shifters, lab components, up/down-converters, along with subsystems and integrated assemblies.

Ducommun
ducommun.com
MMIC Amplifiers up to 43.5 GHz
Mini-Circuits' new TSS-44+ MMIC gain block covers the entire 22 to 43.5 GHz range! This model provides 16 dB gain with excellent flatness of ±0.9 dB over its full band, 3.5 dB noise figure, and low current consumption of just 22mA. The amplifier also includes an internal shutdown feature, allowing users to shut off the amplifier within 10µs of applying a control. The TSS-44+ integrates the entire matching network and most of the bias circuit into a tiny 3x3mm QFN Package.

3D mmWave Imaging and Sensing Kit
Mini-Circuits' VTRIG-74 is a revolutionary tool incorporating Vayyar's highly integrated RFIC radar technology into a compact evaluation kit. This kit enables researchers around the world to explore and realize millimeter wave imaging and sensing applications in the 62 to 69 GHz range without the cost and overhead otherwise associated with developing the required hardware. The kit includes the entire millimeter-wave front-end and analog baseband signal chain for paths up to 40 antennas. It includes a full API that operates on Windows® and is compatible with both Python and Matlab.

Synthesized Signal Generator, 10 MHz to 15 GHz
Mini-Circuits' SSG-15G-RC is a wideband synthesized signal generator capable of generating output signals from 10 MHz to 15 GHz with dynamic range from -50 to +16 dBm. The generator offers multiple pulse modulation options and is capable of sweeping frequencies or power levels (up, down, or bidirectional). Controlled via USB or Ethernet, the unit comes with Mini-Circuits’ user-friendly GUI and full API.

40 GHz Programmable Attenuator
Mini-Circuits’ RCDAT-40G-30 is an ultra-wideband programmable attenuator offering precise signal level control for applications from 0.1 to 40 GHz. The device has an attenuation range from 0 to 30 dB with 0.5 dB attenuation steps. It is capable of sweeping and hopping attenuation sequences and allows control of up to 25 attenuators through a single interface via daisy-chain connection. Controlled via USB or Ethernet, the attenuator comes with Mini-Circuits’ user-friendly GUI and full API for programming.

Dual SP6T Switch Module, DC to 40 GHz
Mini-Circuits RC-2SP6T-40 is a USB/Ethernet-controlled dual SP6T switch module with an operating frequency range from DC to 40 GHz. Each of the electromechanical switches provides 0.4 dB typical insertion loss and 80 dB typical isolation with a minimum lifetime of 2 million switching cycles per switch position. The unit comes with Mini-Circuits’ user-friendly GUI and full API for programming.

Coaxial Fixed Slope Equalizers
Mini-Circuits’ popular fixed gain slope equalizers are now available in SMA-connectorized housings to meet your needs. The new VEQY-series provides precise attenuation slope values to flatten negative gain slope from DC to 6 GHz. Available from stock in slope values of 1, 2, 3, 4, 5, 6, 8, and 10 dB.

Tiny LTCC Balun, 2400 to 2500 MHz
Mini-Circuits’ BLNK1-252R+ is an LTCC balun transformer covering the 2400 to 2500 MHz range, optimized for Wi-Fi, Bluetooth, and Zigbee application bands. This model has an impedance ratio of 1:1 with RF input power handling up to 0.5W and insertion loss of 0.3 dB. The unit is designed into an ultra-small 0402 ceramic monolith with wraparound terminations.

Coaxial Reflectionless High Pass Filter, 2940 to 11500 MHz
Mini-Circuits’ revolutionary reflectionless filters are now available in coaxial housings to meet your needs for connectorized assemblies and lab use. Model VXHF-392+ is an SMA-connectorized reflectionless high pass filter with a passband from 3940 to 11500 MHz. The filter provides 0.8 dB passband insertion loss, 12.5 dB stopband rejection, and good VSWR in the passband and stopband.
Advertiser Index

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCOM</td>
<td>42</td>
</tr>
<tr>
<td>American Technical Ceramics</td>
<td>31</td>
</tr>
<tr>
<td>Analog Devices</td>
<td>5</td>
</tr>
<tr>
<td>Anritsu Company</td>
<td>18</td>
</tr>
<tr>
<td>API Technologies</td>
<td>1</td>
</tr>
<tr>
<td>Besser Associates</td>
<td>45</td>
</tr>
<tr>
<td>Coilcraft</td>
<td>11</td>
</tr>
<tr>
<td>C. W. Swift & Associates</td>
<td>C2</td>
</tr>
<tr>
<td>Damaskos</td>
<td>43</td>
</tr>
<tr>
<td>dBm</td>
<td>7</td>
</tr>
<tr>
<td>Delta Electronics</td>
<td>41</td>
</tr>
<tr>
<td>Ducommun</td>
<td>46</td>
</tr>
<tr>
<td>Equipto Electronics</td>
<td>36</td>
</tr>
<tr>
<td>Herotek</td>
<td>14</td>
</tr>
<tr>
<td>Fairview Microwave</td>
<td>17</td>
</tr>
<tr>
<td>IW Microwave</td>
<td>35</td>
</tr>
<tr>
<td>Luff Research</td>
<td>43</td>
</tr>
<tr>
<td>Micro Lambda Wireless</td>
<td>9</td>
</tr>
<tr>
<td>Microwave Components</td>
<td>3</td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td>13</td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td>21</td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td>25</td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td>37</td>
</tr>
<tr>
<td>Norden Millimeter</td>
<td>23</td>
</tr>
<tr>
<td>OML</td>
<td>39</td>
</tr>
<tr>
<td>Passive Plus</td>
<td>34</td>
</tr>
<tr>
<td>Pasternack</td>
<td>30</td>
</tr>
<tr>
<td>Pasternack</td>
<td>C4</td>
</tr>
<tr>
<td>Planar Monolithics Industries</td>
<td>19</td>
</tr>
<tr>
<td>PolyPhaser</td>
<td>15</td>
</tr>
<tr>
<td>Pulsar Microwave</td>
<td>20</td>
</tr>
<tr>
<td>Satellink</td>
<td>43</td>
</tr>
<tr>
<td>Sector Microwave</td>
<td>43</td>
</tr>
<tr>
<td>SGMC Microwave</td>
<td>C3</td>
</tr>
<tr>
<td>Wenteq Microwave</td>
<td>43</td>
</tr>
</tbody>
</table>

The ad index is provided as an additional service by the publisher, who assumes no responsibility for errors or omissions.

Find Our Advertisers’ Web Sites using HFeLink™

1. Go to our company information Web site: www.HFeLink.com, or
2. From www.highfrequencyelectronics.com, click on the HFeLink reminder on the home page
3. Companies in our current issue are listed, or you can choose one of our recent issues
4. Find the company you want ... and just click!
5. Or ... view our Online Edition and simply click on any ad!

High Frequency Electronics (USPS 024-316) is published monthly by Summit Technical Media, LLC, 3 Hawk Dr., Bedford, NH 03110. Vol. 18 No.7 July 2019. Periodicals Postage Paid at Manchester, NH and at additional mailing offices.
POSTMASTER: Send address corrections to High Frequency Electronics, PO Box 10621, Bedford, NH 03110-0621.
Subscriptions are free to qualified technical and management personnel involved in the design, manufacture and distribution of electronic equipment and systems at high frequencies. Copyright © 2019 Summit Technical Media, LLC
QUALITY, PERFORMANCE AND RELIABILITY IN PRECISION COAXIAL CONNECTORS

Manufacturer of Precision Coaxial Connectors
620 Atlantis Road, Melbourne, FL 32904
Phone: 321-409-0509 Fax: 321-409-0510
sales@sgmcmicrowave.com
www.sgmcmicrowave.com

SGMC Microwave — The name to count on for Quality, Performance and Reliability! Please contact us today by Phone, Fax or Email.

ISO 9001:2008

SGMC Microwave — The name to count on for Quality, Performance and Reliability! Please contact us today by Phone, Fax or Email.

Manufacturer of Precision Coaxial Connectors
620 Atlantis Road, Melbourne, FL 32904
Phone: 321-409-0509 Fax: 321-409-0510
sales@sgmcmicrowave.com
www.sgmcmicrowave.com

Get info at www.HFeLink.com
Armed with the world’s largest selection of in-stock, ready to ship RF components, and the brains to back them up, Pasternack Applications Engineers stand ready to troubleshoot your technical issues and think creatively to deliver solutions for all your RF project needs. Whether you’ve hit a design snag, you’re looking for a hard to find part or simply need it by tomorrow, our Applications Engineers are at your service. Call or visit us at pasternack.com to learn more.

866.727.8376
Pasternack.com