Pondering on Power Measurements

IN THIS ISSUE:
Eliminate High-Speed ADC Flicker Noise with Chopper Upgrade MMIC Broadband Feedback Amplifiers
In the News Market Reports Featured Products Product Highlights

IMS 2015 Show Issue

Ideas for today’s engineers: Analog · Digital · RF · Microwave · mm-wave · Lightwave
C.W. SWIFT & Associates, Inc.
C.W. SWIFT & Associates distributes our extensive inventory of SGMC Microwave’s quality products ... OFF THE SHELF!

SGMC Microwave Components are in Stock — Call Today for a Quote!

Including These Connector Series

<table>
<thead>
<tr>
<th>Connector Series</th>
<th>DC-65 GHz</th>
<th>DC-40 GHz</th>
<th>DC-18 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.85mm</td>
<td>2.92mm</td>
<td>7mm</td>
<td></td>
</tr>
<tr>
<td>2.4mm</td>
<td>3.5mm</td>
<td>SSMA</td>
<td></td>
</tr>
<tr>
<td>2.4mm</td>
<td>3.5mm</td>
<td>SSMA</td>
<td></td>
</tr>
</tbody>
</table>

ISO 9001:2008

SGMC Microwave Components are in Stock — Call Today for a Quote!

C.W. SWIFT & Associates, Inc.
15216 Burbank Blvd., Van Nuys, CA 91411
Tel: 800-642-7692 or 818-989-1133 or Fax: 818-989-4784
sales@cwswift.com • www.cwswift.com

Visit Us In Phoenix!
IMS Booth # 2229

CLOSED EVERY ST. PATRICK’S DAY!
Meet the magic number for two-watt temperature-variable attenuators.

The most important thing we build is trust.

Push the limits of frequency without sacrificing performance. Cobham Inmet’s new Powerfilm surface-mount attenuators vary with temperature and are the perfect balance of price, power, and dependability. They offer the flattest broadband performance of their kind and allow you to create automatic- and passive-link margin compensation on a wider variety of transmit and receive chain circuit applications.

- Operation: DC to 12 GHz
- Superior RF attenuation vs. temperature
- Excellent return loss vs. frequency
- Great pricing

Save money and space by throwing out your complicated gain-control circuitry and required bias and control voltages. Visit our website for complete details and request a sample today.

Cobham Inmet
734-426-5553
888-244-6638
www.cobham.com/Inmet

Meet the magic number for two-watt temperature-variable attenuators.

The most important thing we build is trust.
Wideband Transformers & Baluns!

NOW!

4 kHz - 18 GHz From 99¢ ea. (qty. 20)

To support an even wider range of applications, Mini-Circuits tiny surface-mount transformers and baluns now cover frequencies up to 18 GHz! Our latest designs achieve consistent performance across very wide frequency bands, and our baluns have demonstrated great utility for chipsets. With over 250 trusted models in stock representing a wide selection of circuit topologies and impedance ratios, chances are, we have a solution for your needs!

Our Low Temperature Co-Fired Ceramic (LTCC) models provide reliable performance in tough operating conditions, tiny size – as small as 0805 – and very low cost. All core-and-wire models are available with our exclusive Top Hat™ feature, improving pick-and-place accuracy and throughput. We even manufacture our own transmission wire under rigorous control and use all-welded connections to ensure reliability and repeatability you can count on.

Visit minicircuits.com and use Yonii™, our patented search engine to search our entire model database by performance criteria and find the models that meet your requirements. Order today and have them in hand as soon as tomorrow! Cost-effective custom designs and simulations with fast turnarounds are just a phone call away!

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com
90° Splitters

5 MHz to 8 GHz

$1.99 ea. qty. 1000

With over 70 different models, our two-way 90° splitters make the perfect building blocks for many designs including balanced amplifiers, IQ modulator/demodulators, single sideband modulators, image rejection mixers, voltage variable attenuators, phase shifters, and more! Use them for signal processing designs requiring 90° phase offset or to insulate your circuit from reflective elements. The industry’s widest range of frequencies, extra low amplitude and phase unbalance, and packages as small as 0.08 x 0.05” make these hybrids essential tools for your RF design toolbox.

Tiny, robust, low-cost LTCC models are now available in small quantity reels, with standard counts of 20, 50, 100, 200, 500, 1000, or 2000 at no extra cost! For full performance details and product availability, visit minicircuits.com.

Order online today and have units in-hand as soon as tomorrow!
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Feature Article</td>
<td>Pondering on Power Measurements</td>
<td>By Joseph Cahak</td>
<td>Reviewing the various methods of measuring RF power.</td>
</tr>
<tr>
<td>36</td>
<td>Feature Article</td>
<td>Eliminate High-Speed ADC Flicker Noise with Chopper Upgrade</td>
<td>By Tommy Neu</td>
<td>ADCs are moving into more advanced CMOS process nodes.</td>
</tr>
<tr>
<td>44</td>
<td>Feature Article</td>
<td>MMIC Broadband Feedback Amplifiers</td>
<td>By John E. Penn</td>
<td>A simple design approach for broadband gain stages where noise figure and power efficiency are not a primary driver.</td>
</tr>
<tr>
<td>52</td>
<td>Product Highlights</td>
<td>Featuring Boonton, OML, Master Bond, AmpliTech, Copper Mountain Technologies, Anritsu, and more.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>In The News</td>
<td>Highlighting Tern, Versatile Power, NI AWR Design Environment, the ASW Continuous Trail Unmanned Vessel, and more.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>In Memoriam</td>
<td>Remembering Vincent McHenry.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Redefining RF and Microwave Instrumentation

with open software and modular hardware

Achieve speed, accuracy, and flexibility in your RF and microwave test applications by combining National Instruments open software and modular hardware. Unlike rigid traditional instruments that quickly become obsolete by advancing technology, the system design software of NI LabVIEW coupled with NI PXI hardware puts the latest advances in PC buses, processors, and FPGAs at your fingertips.

>> Learn more at ni.com/redefine

800 813 5078
The City of Phoenix provides a modern yet historic setting for IMS 2015. Long before Governor John C. Fremont signed legislation that made Phoenix an incorporated city in 1861, there was a civilized community that inhabited this land. Today the Pueblo Grande ruins, which were occupied between 700 AD and 1400 AD, provide confirmation of the city’s early origins.

The Salt River runs through the city and as early as 300 BC, the Hohokam were farming in what is commonly called “The Valley of the Sun.” They built a system of canals to provide irrigation to the otherwise dry land. Many of these ancient canals still exist today buried beneath the streets of metropolitan Phoenix. The ultimate fate of this ancient society is a mystery. The accepted belief is that it was destroyed by a prolonged drought. Native Americans, observing the Pueblo Grande ruins and the vast canal system these people left behind, gave them the name “Ho Ho Kam”—the people who have gone.

Jack Swilling and Water Diversion

Phoenix’s modern history began in the second half of the 19th century. In 1867, Jack Swilling stopped to rest his horse at the base of the White Tank Mountains. He saw the expansive Salt River Valley surrounded by rich, but dry, soil. He saw farm land. All it needed was water. Soon he began cleaning out ancient Hohokam canals and diverting water from the Salt and Gila Rivers. By the summer of 1868 the era of modern agriculture had begun.

That same year a small settlement was established approximately four miles east of present day downtown Phoenix. By 1874, downtown lots were selling for $7 to $11 each and the first telegraph line had arrived. The first operator of this station was a man named Morris Goldwater whose nephew, Senator Barry M. Goldwater, would become one of the region’s early ham radio operators, with call letters K7UGA.

Phoenix saw rapid growth between 1950 and 1970 fueled by the “Five C’s”: Copper, Cattle, Cotton, Citrus and Climate. Today Phoenix and its surrounding communities are home to a thriving high-tech economy. Companies like Raytheon, Honeywell, General Dynamics C4 Systems, Boeing, United Technologies, and Northrup Grumman all have operations in the area. There are over 15 industry and trade associations within the state. Arizona State University alone boasts an enrollment of nearly 85,000 students and its Fulton School of Engineering graduate school is ranked in the top 20 in the US.
With a rich history, modern infrastructure, and beautiful mountainous desert landscape Phoenix will be a superb gathering place for Microwave Week 2015.

Microwaves Soaring Towards the Future

The theme of this year’s conference is “Microwaves Soaring Towards the Future.” In his welcome message IMS 2015 General Chair Vijay Nair said there will be an emphasis on new and emerging fields like wearable electronics, internet of things, 3D printing, 5G, and RF/MW technology in life science. The theme will resonate throughout the keynote talks, panel sessions and technical presentations.

Microwave Week kicks off on Sunday with the co-located RFIC Plenary Session featuring two intriguing topics: “THz Imaging to Millimeter-Wave Stimulation of Neurons: Is there a Killer Application for High Frequency RF in the Medical Community?” presented by Dr. Peter H. Siegel of Jet Propulsion Laboratories; and “RF as the Differentiator” presented by Dr. Hermann Eul of Intel.

The traditional IMS Plenary session will be held Monday evening and will feature a keynote address, “Soft Assemblies of Radios, Sensors and Circuits for the Skin,” by Dr. John Rogers from the University of Illinois.

The week concludes with another co-located event, the 85th meeting of ARFTG (Automatic RF Techniques Group). The first meeting held at the Hughes Aircraft Fullerton facility in 1972 brought together individuals who were users of Hewlett-Packard automatic network analyzers. Today, according to the group, “ARFTG is a technical organization interested in all aspects of RF and Microwave test and measurement.” This viewpoint is reinforced by the variety and depth of this year’s oral and interactive forum papers.

IMS and HFE

Once a year, IMS offers the single best opportunity to see what’s new, expand your technical knowledge, network with colleagues and meet one-on-one with a wide range of vendors. I hope to see you there!

When you are visiting the Exhibit Hall please stop by Booth 329 and say “hello” to the staff of High Frequency Electronics. We always enjoy catching up with our readers and advertisers.
Conferences & Meetings

2015 IEEE MTT-S International Wireless Power Transfer (WPTC 2015)
Boulder, Colorado, USA
http://www.wptc2015.org/
Paper Submission Deadline: 16 January 2015

2015 IEEE International Microwave Symposium (IMS2015)
17-22 May 2015
Phoenix, Arizona, USA
http://ims2015.org/
Paper Submission Deadline: 8 December 2014

17-19 May 2015
Phoenix, Arizona, USA
http://rfic-ieee.org/
Paper Submission Deadline: 12 January 2015

85rd ARFTG Microwave Measurement Symposium
22 May 2015
Phoenix, AZ, USA
http://www.arftg.org/

2015 IEEE MTT-S International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave and Terahertz Applications (NEMO 2015)
11-14 August 2015
Ottawa, Canada
http://nemo-ieee.org
Paper Submission Deadline: 16 February 2015

2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)
23 – 28 August 2015
Hong Kong
www.irmmw-thz2015.org

2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)
26 – 28 August 2015
Sendai, Japan
www.ieee-jp.org/japancouncil/chapter/MTT-17/rfit2015/

2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)
21 – 23 September 2015
Taiwan
www.ieee-jp.org/japancouncil/chapter/MTT-17/rfit2015/

2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB)
4 – 7 October 2015
Montreal
www.icuwb2015.org

Company-Sponsored Training & Tools

Analog Devices
Training, tutorials and seminars.

NI AWR
On-site and online training, and open training courses on design software.

National Instruments
LabVIEW Core 1
Online
http://sine.ni.com/tacs/app/fp/p/ap/ov/pg/1/
LabVIEW Core 2
Online
http://sine.ni.com/tacs/app/fp/p/ap/ov/pg/1/
Object-Oriented Design and Programming in LabVIEW
Online
http://sine.ni.com/tacs/app/fp/p/ap/ov/pg/1/
Free, online LabVIEW training for students and teachers.
http://sine.ni.com/nievents/app/results/p/country/us/type/webcasts/

HFE June Product Highlights:
Cable & Connectors; Defense
Contact your ad rep today!
Micro Lambda Wireless, Inc offers a complete line of oscillators, filters and harmonic generators for the military market. Whether you are designing for an Aircraft, Ship Board, Missile or Ground Based military system, check out the product capabilities available from Micro Lambda Wireless.

Oscillators covering 500 MHz to 40 GHz, filters covering 500 MHz to 50 GHz and harmonic generators covering 1 GHz to 20 GHz special packaging can be provided based on customer specific requirements. Individual components can also be provided utilizing industrial parts and the components can be screened and tested to specially designed test plans.

Dressed and Ready for Action
Custom Packaged Military Components

- MLFI, MLFP and MLFD Series Bandpass filters
- MLFR and MLFRD Series Bandreject (notch) filters
- MLOS, MLXS, MLOB, MLXB Series Oscillators
- MLHG Series Harmonic Generators

“Look to the leader in YIG-Technology”

www.microlambdawireless.com
Enterprise Femtocells Drive Market Growth

Operators, equipment vendors, and enterprise customers are all on the same page when it comes to indoor solutions; they need advanced equipment to meet the growing demands and create opportunities for new revenue streams. As the residential femtocell market craters, enterprise femtocells will drive overall growth to almost $800 million by 2020, according to ABI Research.

The year 2014 witnessed vendors like Alcatel-Lucent, Nokia, and Ericsson debuting new enterprise small cells with LTE-A capabilities like carrier aggregation, VoLTE, and LAATM. “Advanced LTE features accommodate enterprise’s dynamic requirements while equipping operators to provide more lucrative services. Also, vendors shift efforts back into technology development after spending time on improving site services and forming partnerships within the ecosystem,” comments Ahmed Ali, Research Analyst at ABI Research.

However, technical innovation, especially voice related, moves the femtocell market segments in different directions. “Wi-Fi calling proves disruptive for the residential market as operators look to limit cost on that segment. On the other hand, VoLTE, is strengthening the business case for enterprise femtocells, aligning well with the overall LTE growth,” continues Ali.

Although femtocell solutions make a strong case for small-to-medium enterprise, there is fierce competition from other in-building solutions to capture the medium-to-large enterprise market. The Distributed Radio System (DRS), in particular, has established a growing market with solutions from major small cell vendors like Alcatel-Lucent, Ericsson, and Airvana. A DRS solves problems that arise from clustering small cells including interference, handover, and scalability. Yet conventional femtocell networks still maintain the advantage in terms of cost and ease of deployment.

—ABI Research
abiresearch.com

Data Captured by IoT Connections to Top 1.6 Zettabytes in 2020

A new report from ABI Research estimates that the volume of data captured by IoT-connected devices exceeded 200 exabytes in 2014. The annual total is forecast to grow seven-fold by the decade’s end, surpassing 1,600 exabytes—or 1.6 zettabytes—in 2020.

Principal Analyst Aapo Markkanen says, “The data originating from connected products and processes follows a certain journey of magnitudes. The yearly volumes that are generated within endpoints are counted in yottabytes, but only a tiny fraction of this vast data mass is actually being captured for storage or further analysis. And of the captured volume, on average over 90% is stored or processed locally without a cloud element, even though this ratio can vary greatly by application segment. So far, the locally dealt data has typically been largely inaccessible for analytics, but that is now starting to change.”

In terms of deployment architectures, the IoT is currently undergoing a major paradigm shift from cloud computing toward edge computing. On one hand, this shift is opening up edge-based data to meaningful analysis, by distributing the analytic workloads across the network. On the other hand, it is also shoring up the cloud-level capabilities by making the transmitted data more actionable, by enriching and contextualizing the payloads.

Practice Director Dan Shey adds, “Edge computing is a huge challenge for the entire IoT value chain, as we can see from the way that cloud platforms, analytics vendors, and gateway suppliers are scrambling to collaborate with each other. It is also a great opportunity for various software and hardware players that have been working towards this goal even far before the IoT as a concept became fashionable. Names like AGT International, Eurotech, Kepware Technologies, OSIsoft, and Panduit are all examples of firms whose background in distributed intelligence allows them now to expand their target market, even significantly.”

—ABI Research
abiresearch.com

Tech Breakthroughs Fuel Wireless Sensor Network Growth

The global wireless sensor networks market is highly dynamic with rapid technological developments strengthening their use case in a myriad of applications. Need for real-time data monitoring and analysis in factory automation is the primary driver for wireless sensor networks. End users are also comfortable employing wireless devices for less critical functions such as tracking production flow and quality. Cloud connectivity and development of newer wireless protocols have strengthened deployment.

New analysis from Frost & Sullivan finds that the market earned revenues of $1.20 billion in 2014 and estimates this to reach $3.26 billion in 2020 at a compound growth rate of 18.1 percent.

“All industries, apart from consumer electronics and goods, deploy wireless sensor networks for monitoring,” said Dr. Rajender Thusu. “The building automation, supply chain, defense, materials handling, and food and beverage sectors use wireless sensor networks for tracking and tagging in addition to monitoring.”

—Frost & Sullivan
frost.com
The Smart Choice for Small Spaces

Coilcraft is the brand engineers trust most when specifying tiny inductors for wearable technology.

Boost the performance and battery life of your wearable products with these tiny RF and power inductors from Coilcraft:
- Wirewound chip inductors as small as 0201 size for wireless communications
- Shielded power inductors as thin as 0.71 mm for power management
- Coupled inductors as small as 2.2 x 1.45 mm for LED display drivers

You can get started by using our suite of web tools to quickly locate the perfect inductors for your design. Compare and analyze multiple parts based on your true operating conditions, and then order free evaluation samples with just a click.

DARPA has awarded prime contracts for Phase 2 of Tern, a joint program between DARPA and the U.S. Navy's Office of Naval Research (ONR). The goal of Tern is to give forward-deployed small ships the ability to serve as mobile launch and recovery sites for medium-altitude, long-endurance unmanned aerial systems (UAS). These systems could provide long-range intelligence, surveillance and reconnaissance (ISR) and other capabilities over greater distances and time periods than is possible with current assets, including manned and unmanned helicopters. Further, a capacity to launch and retrieve aircraft on small ships would reduce the need for ground-based airstrips, which require significant dedicated infrastructure and resources. The two prime contractors selected by DARPA are AeroVironment, Inc., and Northrop Grumman Corp.

“To offer the equivalent of land-based UAS capabilities from small-deck ships, our Phase 2 performers are each designing a new unmanned air system intended to enable two previously unavailable capabilities: one, the ability for a UAS to take off and land from very confined spaces in elevated sea states and two, the ability for such a UAS to transition to efficient long-duration cruise missions,” said Dan Patt, DARPA program manager. “Tern’s goal is to develop breakthrough technologies that the Navy could realistically integrate into the future fleet and make it much easier, quicker and less expensive for the Defense Department to deploy persistent ISR and strike capabilities almost anywhere in the world.”

The first two phases of the Tern program focus on preliminary design and risk reduction. In Phase 3, one performer will be selected to build a full-scale demonstrator Tern system for initial ground-based testing. That testing would lead to a full-scale, at-sea demonstration of a prototype UAS on an at-sea platform with deck size similar to that of a destroyer or other surface combat vessel.

DARPA’s Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program seeks to develop a new type of unmanned surface vessel that could independently track adversaries’ ultra-quiet diesel-electric submarines over thousands of miles. One of the challenges that the ACTUV program is addressing is development of autonomous behaviors for complying with the International Regulations for Preventing Collisions at Sea, known as COLREGS. Substantial progress has been made in developing and implementing those behaviors. Currently, ACTUV’s system for sensing other vessels is based on radar, which provides a “90 percent solution” for detecting other ships. However, radar is less suitable for classification of the type of other vessels, for example determining whether the vessel is a powered vessel or a sailboat. Additionally, one of the requirements of COLREGS is to maintain “a proper lookout by sight and hearing.”

To help augment ACTUV’s capability for sensing and classifying other vessels, and to reduce reliance on radar as ACTUV’s primary sensor, DARPA has issued a Request for Information (RFI) about currently available technologies that could help ACTUV and future unmanned surface vessels perceive and classify nearby ships and other objects. DARPA is specifically interested in sensor systems and image-processing hardware and software that use passive (electro-optical/infrared, or EO/IR) or non-radar active (e.g., light detection and ranging, or LIDAR) approaches. The goal is to develop reliable, robust onboard systems that could detect and track nearby surface vessels and potential navigation hazards, classify those objects’ characteristics and provide input to ACTUV’s autonomy software to facilitate correct COLREGS behaviors.

For decades, the United States has successfully countered the threats of competitor nations by harnessing advanced technologies to create exceedingly robust and capable military platforms. But as advanced technologies have become more readily available to adversaries on commercial markets, the Nation’s focus on ever more complex weapons systems has become not just a strength but also a weakness. Effective as they are, U.S. military systems today are often too expensive to procure in the...
YOUR COMPLETE E-BAND SOLUTION

IMS 2015 Booth 2009

SAGE Millimeter, Inc.

MADE IN USA

www.sagemillimeter.com | 3043 Kashiwa Street, Torrance, CA 90505
T: 424-757-0186 | F: 424-757-0180 | sales@sagemillimeter.com
quantities needed, and may take so long to develop that the electronic components they contain are obsolete by the time they become operational.

To address these challenges as they apply to airborne platforms, DARPA has kicked off the System of Systems (SoS) Integration Technology and Experimentation (SoSITE) program. SoSITE aims to develop and demonstrate concepts for maintaining air superiority through novel SoS architectures—combinations of aircraft, weapons, sensors and mission systems—that distribute air warfare capabilities across a large number of interoperable manned and unmanned platforms. The vision is to integrate new technologies and airborne systems with existing systems faster and at lower cost than near-peer adversaries can counter them.

Versatile Power announced the addition of Saelig Company, Fairport, New York., to its list of authorized distributors of Versatile Power’s new family of BENCH Programmable Power Supplies. The Versatile Power BENCH series are compact, programmable, DC power supplies and are nearly half the cost compared to the industry's leading producer of power supplies.

NI (formerly AWR Corporation) announces a new application note titled “Using NI AWR Design Environment Load-Pull Simulation for the Designer of Wideband High-Efficiency PAs” that explores the design of power amplifiers (PAs) leveraging load-pull technology within NI AWR Design Environment™ software, specifically that of Microwave Office.

Using a Cree CGH40010F gallium nitride high-electron mobility transistor in a Class F PA at 2000 MHz as the example circuit, the application note details how power-added efficiency is maximized by optimizing source and load pull at the fundamental frequency, plus second and third harmonics.

Additionally, the ability of the load-pull technique to inspect transistor voltage and current waveforms helps users gain confidence in their high performance designs. The application note is found online at awrcorp.com/solutions/technical-papers.
NI AWR Design Environment consists of a comprehensive software product portfolio that offers a variety of high-frequency design tools that embrace system simulation, circuit simulation, and electromagnetic analysis.

- Microwave Office for MMIC, module, and RF PCB design
- Visual System Simulator for RF/comms. systems design
- Analog Office for analog and RFIC design
- AXIEM for 3D planar electromagnetic analysis
- Analyst for 3D FEM EM simulation and analysis

TRY AWR TODAY!

Try NI AWR Design Environment today and see for yourself how easy and effective it is to streamline your design process, improve end product performance, and accelerate time to market for MMICs, RFICs, RF PCBs, microwave modules, 3D/planar passive interconnects, antennas, communication systems, and more.

>> Learn more at ni.com/awr
Cree’s CGHV40050 is an unmatched, gallium nitride (GaN) high-electron-mobility transistor (HEMT). The CGHV40050, operating from a 50-volt rail, offers a general-purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high-efficiency, high-gain and wide-bandwidth capabilities, making the CGHV40050 ideal for linear and compressed amplifier circuits.

Mini-Circuits
minicircuits.com

RF Inductors
Gowanda Electronics announced five new RF inductor series for military applications. The series that achieved QPL status and the seven MS numbers they address include: MRLF19M (MS90539), MLRF21M (MS90542 and MS14052), MLRF22M (MS90540), MLRF24M (MS90541) and MLRF28M (MS75103 and MS91189).

Gowanda Electronics
gowanda.com

Circuit Assemblies
Molex introduced its new High-Speed Low-Loss Flex Circuit Assemblies, made using DuPont™ Pyralux® TK flexible circuit material. The assemblies are ideal for electronic data transmission applications such as servers and high-end computing, storage servers and signal processing.

Molex
Molex.com

ELINT Detector
Norden Millimeter introduced a channelized activity detector for EW, SIGINT, COMINT and ELINT applications. It operates in the 6 to 18 GHz frequency range and has 12 independent 1 GHz wide simultaneous detection channels. The channel outputs are DC voltages log linear to ±1.0 dB over a 60 dB dynamic range.

Norden Millimeter
nordengroup.com

Isolator
VidaRF offers the 30 - 40 GHz Coaxial Isolator Model VCI-300400 which is a rugged body with S/Steel (K) connectors; if required, sealed and painted to meet IP68 standards. Operating temp -15 to +55C. Other
► IS680 materials offer a complete laminate materials solution for single- and double-sided printed circuit designs and are a cost-effective alternative to PTFE and other commercial microwave materials. Dk available from 2.80 to 3.45.

► I-Tera® MT RF materials are available in 0.010”, 0.020” and 0.030” in 3.38, 3.45 and 3.56 Dk.

► I-Tera® MT materials are suitable for both high-speed digital and RF/microwave designs. A full compliment of cores and prepregs allowing flexibility in design is available in core thicknesses from 0.002” to 0.018”. I-Tera MT has been used in designs up to 24 GHz.

► TerraGreen® halogen-free, very low-loss, thermoset materials are available in a variety of laminate and prepreg offerings. This material is inexpensive to process — improving your company’s bottom line, as well as the environment.

► The revolutionary Astra® MT ultra low-loss thermoset laminates are a replacement for PTFE. Astra MT is available in core and prepreg for double sided, multilayer and hybrid designs using isola 185HR, 370HR or IS415. Astra MT has been used in designs up to 77 GHz.

RF/MICROWAVE MATERIALS

<table>
<thead>
<tr>
<th></th>
<th>IS680</th>
<th>I-Tera® MT RF</th>
<th>I-Tera® MT</th>
<th>TerraGreen®</th>
<th>Astra® MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tg</td>
<td>200°C</td>
<td>200°C</td>
<td>200°C</td>
<td>200°C</td>
<td>200°C</td>
</tr>
<tr>
<td>Td</td>
<td>360°C</td>
<td>360°C</td>
<td>360°C</td>
<td>390°C</td>
<td>360°C</td>
</tr>
<tr>
<td>Dk @ 10 GHz</td>
<td>2.80 - 3.45</td>
<td>3.38, 3.45 & 3.56</td>
<td>3.45*</td>
<td>3.45*</td>
<td>3.00</td>
</tr>
<tr>
<td>Df @ 10 GHz</td>
<td>0.0028 - 0.0036</td>
<td>0.0028, 0.0031 & 0.0034</td>
<td>0.0031*</td>
<td>0.0030*</td>
<td>0.0017</td>
</tr>
<tr>
<td>CTE Z-axis (50 to 260°C)</td>
<td>2.90%</td>
<td>2.90%</td>
<td>2.80%</td>
<td>2.90%</td>
<td>2.90%</td>
</tr>
<tr>
<td>T-260 & T-288</td>
<td>>60</td>
<td>>60</td>
<td>>60</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>Halogen free</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VLP-2 (2 micron Rz copper)</td>
<td>Available</td>
<td>Available</td>
<td>Available</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>Stable Dk & Df over the temperature range</td>
<td>-55°C to +125°C</td>
<td>-55°C to +125°C</td>
<td>-55°C to +125°C</td>
<td>-55°C to +125°C</td>
<td>-40°C to +140°C</td>
</tr>
<tr>
<td>Optimized global constructions for Pb-free assembly</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Compatible with other Isola products for hybrid designs</td>
<td>For use in double-sided applications</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Low PIM < -155 dBc</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Dk & Df are dependent on resin content. NOTE: Dk/Df is at one resin %. Please refer to the Isola website for a complete list of Dk/Df values. The data, while believed to be accurate & based on analytical methods considered to be reliable, is for information purposes only. Any sales of these products will be governed by the terms & conditions of the agreement under which they are sold.

RF Conversion Service

► Isola’s [Design Review Service](http://www.isola-group.com/conversion-service) can facilitate your conversion to Isola’s RF/microwave products and get you to market faster with the newest, ultra-low-loss materials.

► As part of this new service, Isola’s technical staff will provide turn-key calculations, testing, characterizations and material recommendations to assist PCB fabricators and OEMs in converting to Isola's RF-materials, which will help overcome the current material shortages of other vendors and accelerate time-to-market. The design review service also addresses the perceived conversion issues when migrating from a currently used material to an Isola material.

http://www.isola-group.com/conversion-service

FREE! Impedance and Power-Handling Calculator

► Isola's free [Impedance and Power-Handling Calculator](https://isodesign.isola-group.com/phi-calculator) predicts the design attributes for microstrips and striplines based on the design's target impedance and dielectric properties of the company's RF, microwave and millimeter-wave laminate materials.

► This software tool provides a design or an equivalent dielectric constant to facilitate modeling for PCB designers to predict impedance and other design attributes. The software computes changes in the effective dielectric constant due to dispersion at higher frequencies. The software then computes the total insertion loss—a measure of power lost through heat for power handling calculations, including the dielectric loss, conductor loss, and the loss due to the surface roughness. The main factors affecting the typical power-handling capability of a material are its thermal conductivity, the maximum operating temperature, and the total insertion loss.

https://isodesign.isola-group.com/phi-calculator

www.isola-group.com/RF
Featured Products

VidaRF
vidarf.com

Power Amp
Model SBB-0132732526-KFKFSB is a bench-top broadband power amplifier operating from 1.0 to 26.5 GHz. It provides 25 dB small signal gain and a minimum +25 dBm output power over the entire frequency range. It is designed to use 100 - 240 V AC power directly from power line for laboratory use.

SAGE Millimeter
sagemillimeter.com

Waveform Amplifier
The TS250 waveform amplifier amplifies current or voltage or power for driving heavy loads. It is ideal for many test and measurement applications such as LDO and amplifier PSRR test, battery simulator, op-amp CMRR measurement, high-frequency electromagnetic coil driver, general function generator amplifier, transient response test, four-quadrant power supply, lab power amplifier, and more.

Accel Instruments
accelinstruments.com

Cable Assemblies
D-COAX introduced ≤ 1ps skew matched and phase stable high performance flexible coaxial cable assemblies through 65 GHz. The standard assemblies deliver excellent return loss and low insertion loss. Cable Pairs are ideal for: Signal Integrity; Channel Modeling; Jitter Measurements; BERT; Differential Measurements; VNA measurements.

D-COAX
d-coax.com

EW App Note
Keysight’s new app note, “Assembling Cost-effective Development and Verification Solutions for EW Systems,” presents two off-the-shelf alternatives that can address the simulation requirements of subset scenarios for a system under test (SUT). The proposed alternatives offer greater versatility because the constituent instruments can be easily used for other measurement tasks.

Keysight Technologies
keysight.com

VCO
Crystek’s CVCO55CCQ-3500-3500 VCO operates at 3500 MHz with a control voltage range of 0.3 V~4.9 V. This VCO features a typical phase noise of -115 dBc/Hz @ 10 KHz offset and has excellent linearity. Output power is typically +6 dBm. Engineered and manufactured in the USA, it is packaged in...
We’re RF On Demand, with over one million RF and microwave components in stock and ready to ship. You can count on us to stock the RF parts you need and reliably ship them when you need them. Add Fairview Microwave to your team and consider it done.

fairviewmicrowave.com
1.800.715.4396
Featured Products

the industry-standard 0.5-in. x 0.5-in. SMD package.

Crystek
crstek.com

Bandpass Filter
ERF-5W™ has been redesigned to minimize size, weight, power consumption and cost while covering the entire military tactical radio band of 30 to 520 MHz and maintaining high in-band RF power handling (5 watts). It is commonly used in UAV Communication Relay Payload applications. SWaP-C reductions include a new size: 4.7” x 6.8” x 1.0” (119.4 x 172.7 x 25.4 mm) and new weight: 14.08 oz. (399 g).

Pole/Zero
polezero.com

Comtech PST
comtechpst.com

Amplifier
Comtech PST announced the release of a solid state Class “AB” linear amplifier which operates over the full 6-18 GHz frequency band and delivers a minimum of 50 watts. The amplifier uses the latest Gallium Nitride (GaN) technology and is packaged in a standard rack mountable enclosure measuring 19” x 22” x 3.5”.

Mini-Circuits
minicircuits.com

Multiplier
Model SFA-154SF-S1 is a broadband X4 active multiplier with output frequency covering 50 to 66 GHz. With an RF input signal from 12.5 to 16.5 GHz and power level of +3 dBm, it can deliver +16 dBm power in the frequency range of 50 to 66 GHz. The harmonic suppression is -20 dBc typically. It draws 380 mA current from a +8 Vdc DC power supply.

Coupler
Mini-Circuits’ ZUDC20-183+ is a 50Ω, 20dB, Up to 50W, 0.5 to 18 GHz, Directional Coupler that features: ultra wide frequency range, 0.5 to 18 GHz; good coupling flatness, ±0.5 dB typ.; good directivity, 22dB typ. up to 4 GHz; good VSWR, 1.3:1 typ.; DC current pass through input to output. Applications: cellular; lab use; WiMax; ISM; GSM; PCN.

SAGE Millimeter
sagemillimeter.com

Get info at www.HFeLink.com
Hot New! MMIC PRODUCTS

Now Available for Immediate Shipment!

MMIC Splitter/Combiners

2-Way 0°, Ultra-Wideband 1.8 to 12.5 GHz

- Tiny size, 4 x 4mm
- 1.1 dB insertion loss
- 1.85W input power handling
- Good port-to-port isolation, 16 dB
- Low amplitude unbalance, 0.2 dB
- Low phase unbalance, 6°
- DC current passing up to 0.4A

EP2C+

- $556 ea. (qty. 1000)

MMIC Amplifiers

Ultra-Low Noise, High IP3 1.1 to 4.0 GHz

- Ultra-low noise figure, 0.46 dB
- High IP3, up to +33 dBm
- High gain, up to 23 dB
- P1dB up to +19 dBm
- Low power consumption, +5V, 51mA
- Tiny size, 2 x 2mm

PMA2-43LN+

- $276 ea. (qty. 1000)

MMIC Mixers

Wideband 2200 to 7000 MHz

- Tiny Size, 4 x 4mm
- Low conversion loss, 8 dB
- High L-I Isolation, 46 dB
- High L-R Isolation, 39 dB
- IF bandwidth, DC to 1600 MHz
- LO power, +15 dBm
- Usable as up and down converter

MDB-73H+

- $274 ea. (qty. 1000)

MMIC Mixer-Amplifiers

Wideband 2200 to 7500 MHz

- Integrated mixer, LO amplifier, and IF amplifier in one package
- Tiny size, 4 x 4mm
- High L-I Isolation, 61 dB
- Hi R-I Isolation, 51 dB
- Conversion gain up to 9.7 dB
- IF Bandwidth, 30 to 1600 MHz
- LO power, 0 dBm

MDA4-752H+

- $1025 ea. (qty. 1000)

Visit minicircuits.com for detailed specs, performance data, free S-Parameters and off the shelf availability!
Place your order today for delivery as soon as tomorrow!
Pondering on Power Measurements

By Joseph Cahak

A power measurement is a scalar quantity and is a measure of power detected. These measurements can be made in a variety of ways. Most of us are familiar with the notion that voltage (volts) multiplied by current (amps) is power (watts) and power multiplied by time is energy. At DC or low frequencies these power measurements from the current or voltage are relatively easy and not very complicated. As we get to higher frequencies the typical means of measuring voltage or current breakdown are not accurate. The power measurement inaccuracies are due to the frequency response of the detectors at high frequency and also the impedance match of the detectors as well as the instantaneous frequency response of the detector network. All power sensors are broadband sensors. They cannot discriminate between individual signals in a multiple signal environment. These signals can add or subtract from the total power as a combination of the power depending on whether the signals are in or out of phase.

Power measurements in the RF and Microwave frequency range are typically made with thermistor-, thermocouple- or diode-based instruments. The thermistor- or thermocouple-based power sensors are most accurate for “true” or RMS power. True power is properly integrated (modulation envelope) over time to give the “true” power no matter the waveform shape. If the
100W POWER AMPLIFIERS

700-2700 MHz

$8,995 each

48 dB Gain, ±1.7 dB Flatness

Output power up to 100W with consistent performance across a wide frequency range for a fraction of the cost of competitive products! Mini-Circuits’ new HPA-272+ high power rack mount amplifiers are ideal for a wide variety of high power test applications including EMI, reliability testing, power stress testing, and burn-in of multiple units at once. This model provides 48 dB gain with ±1.7 dB gain flatness over its entire frequency range and 89 dB reverse isolation. Housed in a rugged, 19-inch rack-mountable chassis, the amplifier operates on a self-contained 110/220V power supply and includes internal cooling, making it easy to use in most lab environments. Extensive built-in safety features include over-temperature protection and the ability to withstand opens and shorts at the output. They’re available off the shelf for an outstanding value, so place your order on minicircuits.com today for delivery as soon as tomorrow!

*at 3 dB compression point.
signal is a CW (continuous wave) signal that does not vary in signal strength or frequency, the measurement is relatively easy and the RMS value is easy to compute. In the case of more complicated modulated signals or complex waveforms, computing or measuring True RMS power gets more difficult and complicated. To better understand this we will review the methods of measuring RF power.

Thermistor and Thermocouple Devices

The most accurate method of measuring True RF power is with a device called a thermistor or a thermocouple. These devices convert RF power to thermal power (heat) and the thermal power is converted to a resistance or a voltage difference measurement that can be measured and converted to the power measured. There are issues associated with this method of measuring RF power.

The first issue with this method is a limited dynamic range that it will accurately measure over. Most of the sensors in the market today that use thermistor-based sensors have a measurement range of -30 to +20 dBm. Some measure higher power levels with an attached calibrated attenuator. Microprocessors and EEPROM calibration tables are used to perform power correction for temperature and frequency response.

With RF power to thermal conversion, there is a small time lag for the thermal response from the RF power. While this is a small sensor with a small thermal mass in the sensor, nonetheless this equates to a small lag in the power response. This property will affect accuracy of rapidly varying signals, and signals with complex modulation. Finally, there is a frequency response associated with the sensor and also the impedance match of the interface to the sensor. These responses can be calibrated and removed using a cal factor for the sensor.

Diode Devices

Another method of measuring power is with a diode sensor. These diode sensors have a faster response time than thermistor-based sensors, but due to the diode characteristics, they have more impedance match issues than the Thermistor. The diode has low impedance compared to the 50 ohm characteristic impedance of most RF instruments and RF networks in use today. This means that some form of matching network must be used to improve the match into the sensor and DC isolation (blocking). These components have frequency sensitivity.
Instantly Improve the Performance of Your Phased Array Radar!

Phased Array Radar system performance has long been limited by the phase change over temperature of coaxial cables.

Not anymore!

TF4™ - our proprietary, ultra stable dielectric material significantly improves Phased Array Radar system performance by reducing the phase change of the interconnecting coaxial cables.

Typical PhaseTrack TF4™ Performance Typical Low Density PTFE Performance

- Available NOW in various flexible coaxial cable and semi rigid coaxial cable assembly sizes
- Perfect for all Ground, Naval, Airborne or Spaceflight Phased Array Radar applications
- Frequency ranges to 40 GHz
- Wide range of connector types available
- Best Phase Tracking and Absolute Phase Change performance available

World Headquarters: 358 Hall Avenue, Wallingford, CT 06492 • Tel: 203-949-8400; 1-800-667-2629 • Fax: 203-949-8423
International Sales: 4 School Brae, Dysart, Kinross-shire, Fife, Scotland KY11 2XB UK • Tel: +44(0)15928555438
www.timesmicrowave.com
Power Measurements

The diode is sensitive to VSWR and is more prone to measurement error due to these issues. Another issue is the non-linearity of the diodes. What that means is at higher power levels the diodes conduct and the current is no longer square law proportional to the voltage of the detected signal. This has ramifications with measuring complex signal environments. Recall the power equation from voltage:

\[\text{Power} = \frac{V^2}{R} = I^2 \times R\]

This implies that while the diode is in the square law region the voltage output from the rectification is directly proportional to the power in that region only. Outside that region, the power is not directly linear to voltage.

Making power measurements in the quasi and linear regions of the diode response is less accurate when the signal input is modulated with wide bandwidth signals or multiple tone signals. To make these measurements, the instrument must have the dynamic measurement power range and the frequency response to be quantifiable, repeatable and correctable. For the diode sensors, extensive EEPROM correction tables are used for the frequency, signal levels and temperatures at which the power measurements will be made. In many cases these corrections are not adequate for very wideband devices such as Ultra Wideband USB or some of the other digital modulation formats. Most sensors have an instantaneous bandwidth that they can respond to which typically range from 10 MHz to 30 MHz for most power sensors available on the market. This is not important for most measurement markets. With modulation formats wider than this and higher in power than the square law region, pulsed power or sensor instantaneous bandwidth can have varying amounts of error. Recall the comment above regarding operation above the square law region. The trick that can be used to gain some level of better power accuracy for modulated signals with diode sensors is to keep the power within the square law region (-70 to -20 dBm).

Analog Devices has recently come out with a replacement for the Schottky diodes to measure power. The ADL6010 is a coplanar input for measuring power from 500 MHz to 50 GHz. It features built-in linearization for added accuracy.

DSP Devices

One trend is communication power measurements is to use DSP (digital signal processing) architecture to process the signals and get a better measure of power with complex formats and frequency components. These can also provide the ability to measure the peak or envelope power and crest power on multiple tones or modulated signal measurements. They can also offer wider bandwidths than traditional sensors. Capability is only limit-
Our Re-Flex™ Cables Really Have the Competition Bent Out of Shape...

...Because It’s Cool to Be RE-FLEXible

IW’s Re-Flex Cables were designed to offer a highly flexible alternative to standard semi-rigid & conformable cables. IW’s unique laminate dielectric, combined with a tin/alloy plated outer braid provide a double shielded, low loss, re-formable cable that eliminates the failure mode of traditional semi-rigid & conformable cables. Industry standard line sizes provide a range of interconnect options including SMA, TNC, N-type, 3.5mm, 2.92mm, 1.85mm, GPO™ & GPPO™, with standard length SMA male/male assemblies available from 2”, in stock.

Impedence:	50 Ω
Time delay:	1.4 ns/ft
Cut off frequency:	62 GHz for RF 085 34 GHz for RF 141
RF leakage:	Equivalent to semi-rigid cable
Temp range:	-55°C to 165°C
Bend radius:	1/16 inch for RF 085 1/8 inch for RF 141

Call us today with your project specs and we’ll show you the most reliable way to get connected in the industry.

Visit Us At IMS 2015 Booth 2922

INSULATED WIRE, INC.
203.791.1999
www.iw-microwave.com
sales@iw-microwave.com

Scan code to find out how you can get connected
ed by the sampling rate, bit depth and accuracy of the ADC’s or Sigma-D samplers.

Peak Envelope Power and Peak or Crest Power

Other RF power measurements are peak envelope power (PEP) and peak or crest power. These are used to measure the power of multi-tone and digitally modulated waveforms to get the instantaneous power maximum of the system. There are many instances where a power measurement that takes the peak power value of the envelope is needed. All digitally modulated waveforms, AM and single sideband (SSB) use this measurement. The peak measurement is also the crest power, which would be compared to the average power to calculate the crest factor of the RF device, which is the ratio of the peak power level above average power. These peaks can damage power amplifiers if not contained in amplitude.

Instantaneous or Video Bandwidth

Instantaneous or video bandwidth (VBW) is the response after rectification of the signal and the detection circuitry response and ability to integrate the RMS power. This video modulated rectification result is used to calculate the power. If the detection circuitry downstream of the rectification has poor frequency response, the accuracy of the power measurement will degrade. Typical video bandwidth range is 10 MHz up to 100 MHz video or instantaneous bandwidth. The user must be aware of the signal measurement equipment requirements to account for this signal band-
Coaxial Connectors and Adapters
DC-71 GHz DC-71 GHz
Multiport Assemblies
DC to 40 GHz

Please see us at booth 3441
IMS Phoenix
May 19 - 21

Spectrum
when quality is needed

Coaxial Delay Lines
DC to 40 GHz

Cable Assemblies
DC to 71 GHz

Waveguide to Coax Adapters

Gain Amplitude Equalizers

Phase-Adjusters
DC to 63 GHz

Telephone: +49-89-3548-040
Fax: +49-89-3548-0490
Email: Sales@Spectrum-et.com

www.spectrum-et.com
width and to thereby ensure accurate power measurements of modulated signals. If measuring pulsed power the Video or instantaneous bandwidth should be at least 5x the pulse repetition rate.

Measurement Accuracy

The quality or accuracy of the power measurement depends not only on the power sensor calibration factors previously mentioned. Another significant source of measurement error is the sensor impedance match and the match of the device port under test. This mismatch error is computed with the formula $\text{MismatchError} = 10 \log (1 \pm \rho_g \rho_l)^2$. The + and – represent the max and minimum mismatch for the measurement mismatch loss of power measured ρ_g and ρ_l are the generator and load reflection coefficient.

About the Author:

Joseph Cahak is currently employed at Silanna Semiconductor as an RF Test Engineer. He began his career in 1983 at defense contractor Watkins-Johnson Company, Palo Alto, Calif., working on the bench and worked his way up to ATE Specialist working with
When amplifier designers asked, Rogers listened and developed RO4360G2™ high-frequency laminates. These thermoset materials feature a powerful balance of high performance, low cost and ease of processing in a laminate with a dielectric constant of 6.15.

RO4360G2 laminates deliver the low loss and high thermal conductivity sought by amplifier designers. Suitable for a variety of commercial and industrial applications, RO4360G2 laminates can be processed similar to FR-4 & support lead-free, RoHS-compliant manufacturing practices.

Features
- High dielectric constant
- Low loss
- High thermal conductivity
- Low Z-axis CTE (30 PPM/°C) for reliable PTHs

Total Cost Solution
- Priced better than alternatives
- Low fabrication cost

Ease of Fabrication
- Ideal for multilayer circuits
- Suitable for automated assembly lines
- Processes similar to FR-4
- Lead free, RoHS compliant

Visit www.rogerscorp.com to learn more about our full line of High Frequency Laminates.
AMCOM is pioneering the technology of controlling the device impedance to achieve ultra wide-band, high-power MMIC amplifiers. AMCOM is releasing 4 GaN MMIC ultra wide-band, high-power amplifiers. The Table below shows the performance. AMCOM products include discrete power devices, MMIC power amplifiers and connectorized power amplifier modules from 30MHz to 16 GHZ with output power from 1W to 50W. For more product details, please visit www.amcomuse.com for data sheet with detailed performance.

AMCOM GaN HEMT MMIC Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency (GHz)</th>
<th>Gm (dB)</th>
<th>P_{sat} (dBm)</th>
<th>Eff_{ss} (%)</th>
<th>V_{d} (V)</th>
<th>I_{d} (A)</th>
<th>ECCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM004047SF-2H*</td>
<td>0.05-4.0</td>
<td>33</td>
<td>47</td>
<td>44</td>
<td>25, 90</td>
<td>0.5, 0.9</td>
<td>EAR99</td>
</tr>
<tr>
<td>AM006044SF-2H*</td>
<td>0.05-6.0</td>
<td>22</td>
<td>44</td>
<td>42</td>
<td>35, 66</td>
<td>0.4, 1.0</td>
<td>EAR99</td>
</tr>
<tr>
<td>AM206542TM-00!</td>
<td>2.0-6.5</td>
<td>25</td>
<td>42</td>
<td>20</td>
<td>28</td>
<td>0.96</td>
<td>3A001.b.2.a</td>
</tr>
<tr>
<td>AM310130TM-00!</td>
<td>0.05-13.0</td>
<td>13</td>
<td>33</td>
<td>15</td>
<td>28</td>
<td>0.24</td>
<td>3A001.b.2.b</td>
</tr>
</tbody>
</table>

* 100uS pulse width, 10% duty cycle. They also work in CW mode at lower bias voltage with slightly reduced output power.

CW Operation.

AMCOM is a leading supplier of RF and Microwave Power Measurements. For more information, please visit www.amcomusa.com or call (301) 353-8400.

This article was originally published at rfcafe.com.

Keysight Technologies (formerly Agilent) Application Notes:

- 4 Steps for Making Better Power Measurements App Note 64-4D 5965-8167E
- Fundamentals of RF and Microwave Power Measurements (Part 1) 1449_1_5988-9213EN
- Fundamentals of RF and Microwave Power Measurements (Part 2) 1449_2_5988-9213EN
- Fundamentals of RF and Microwave Power Measurements (Part 3) 1449_3_5988-9213EN
- Fundamentals of RF and Microwave Power Measurements (Part 4) 1449_4_5988-9213EN
- Power Measurement Basics 5965-7919E

Anritsu Company Product or Application Notes

- ML2400A Series Power Meter -15000-00004 rev C
- Accurate Power Measurements on Modern Communication Systems

Analog Devices

(Continued on page 34)
RF Solutions from JFW Industries

Test Systems
Programmable Attenuators
Variable Attenuators
Fixed Attenuators
Terminations
RF Switches
Power Dividers
RF Test Accessories

JFW Industries
Call 317-887-1340
Toll Free 877-887-4JFW (4539)
E-mail sales@jfwindustries.com
Visit www.jfwindustries.com

See us at IMS booth #2426
Power Measurements

Figure 10 • DSP Power Measurement. Courtesy Keysight Technologies.

Figure 11 • Power Mismatch Curves for Anritsu Detector. Courtesy Anritsu Company.

Uncertainty due to Mismatch

![Graph showing uncertainty due to mismatch]

% Uncertainty

- 25.00%
- 20.00%
- 15.00%
- 10.00%
- 5.00%
- 0.00%

Sensor VSWR

Source VSWR

- 20.00%-25.00%
- 15.00%-20.00%
- 10.00%-15.00%
- 5.00%-10.00%
- 0.00%-5.00%
We stock RF, microwave and millimeter wave connectors, adapters, and interface gages from SRI Connector Gage and other fine manufacturers. Call today for a quote.
Modern high-speed analog-to-digital converters (ADCs) are primarily moving into more advanced CMOS process nodes to increase sampling rates and reduce power consumption as much as possible. However, this move away from traditional, bipolar transistor-based ADC designs comes with a big drawback. The low frequency $1/f$ noise or flicker noise of CMOS transistors is significantly worse compared to that of bipolar transistors.

The $1/f$ noise corner of bipolar transistors is around 100 kHz, while for CMOS transistors it ranges anywhere from ~10 MHz to ~1 GHz, depending on the process geometry. The cause of flicker noise is complex. A simplified model is based on the trap density in the oxide-silicon surface. Electrons get into the traps, but get released at a lower frequency. If the trap density is reduced for the same amount of carriers, flicker noise will be reduced as well, because the probability of carriers getting into the traps reduces. Therefore, the $1/f$ noise corner moves lower in frequency. The amount of carriers stays constant, if the width-to-length (W/L) ratio of the transistor stays constant. Alternatively, trap density is reduced by increasing the area. As such, a lower $1/f$ noise corner requires an area increase (larger transistor size) with the same W/L ratio.
High Linearity LNAs

NF as low as 0.5 dB • IP3 up to 43 dBm • DC current 20 mA and up from $1.49 ea. (qty. 20)

Pick your parameters, and meet your needs at Mini-Circuits! With over 20 low noise/high linearity amplifier models to choose from, you’ll likely find the output power, gain, DC current, and broad bandwidths required to upgrade almost any 3-to-5V circuit—from cellular, ISM, and PMR to wireless LANs, military communications, instrumentation, satellite links, and P2P—and all at prices that preserve your bottom line!

Our catalog models are in stock and ready to ship, so why wait? Go to minicircuits.com for all the details, from data sheets, performance curves, and S-parameters to material declarations, technical notes, and small-quantity reels—as few as 20 pieces, with full leaders and trailers. Place an order today, and see what these tiny, high-performance amplifiers can do for your application, as soon as tomorrow!

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. (MHz)</th>
<th>Gain (dB)</th>
<th>NF (dB)</th>
<th>IP3 (dBm)</th>
<th>P_{out} (dBm)</th>
<th>Current (mA)</th>
<th>Price $ (qty. 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMA2-162LN+</td>
<td>700-1600</td>
<td>22.7</td>
<td>0.5</td>
<td>30</td>
<td>20</td>
<td>55</td>
<td>2.87</td>
</tr>
<tr>
<td>PMA-5452+</td>
<td>50-6000</td>
<td>14.0</td>
<td>0.7</td>
<td>34</td>
<td>18</td>
<td>40</td>
<td>1.49</td>
</tr>
<tr>
<td>PSA4-5043+</td>
<td>50-4000</td>
<td>18.4</td>
<td>0.75</td>
<td>34</td>
<td>19</td>
<td>33 (5V)</td>
<td>2.50</td>
</tr>
<tr>
<td>PMA-5455+</td>
<td>50-6000</td>
<td>14.0</td>
<td>0.8</td>
<td>33</td>
<td>19</td>
<td>40</td>
<td>1.49</td>
</tr>
<tr>
<td>PMA-5451+</td>
<td>50-6000</td>
<td>13.7</td>
<td>0.8</td>
<td>31</td>
<td>17</td>
<td>30</td>
<td>1.49</td>
</tr>
<tr>
<td>PMA2-252LN+</td>
<td>1500-2500</td>
<td>15-19</td>
<td>0.8</td>
<td>30</td>
<td>18</td>
<td>25-55 (3V)</td>
<td>2.87</td>
</tr>
<tr>
<td>PMA-545G1+</td>
<td>400-2200</td>
<td>31.3</td>
<td>0.9</td>
<td>33</td>
<td>22</td>
<td>158</td>
<td>4.95</td>
</tr>
<tr>
<td>PMA-545G2+</td>
<td>1100-1600</td>
<td>30.4</td>
<td>1.0</td>
<td>33</td>
<td>22</td>
<td>158</td>
<td>4.95</td>
</tr>
<tr>
<td>PMA-545G3+</td>
<td>50-4000</td>
<td>14.4</td>
<td>1.0</td>
<td>34</td>
<td>22</td>
<td>158</td>
<td>4.95</td>
</tr>
</tbody>
</table>

Model | **Freq. (MHz)** | **Gain (dB)** | **NF (dB)** | **IP3 (dBm)** | **P_{out} (dBm)** | **Current (mA)** | **Price $ (qty. 20)** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA-103+</td>
<td>50-4000</td>
<td>11.0</td>
<td>0.9</td>
<td>43</td>
<td>22</td>
<td>60 (3V)</td>
<td>1.99</td>
</tr>
<tr>
<td>PSA-5453+</td>
<td>50-4000</td>
<td>14.3</td>
<td>0.7</td>
<td>37</td>
<td>20</td>
<td>60</td>
<td>1.49</td>
</tr>
<tr>
<td>PSA-5453+</td>
<td>50-4000</td>
<td>14.7</td>
<td>1.0</td>
<td>37</td>
<td>19</td>
<td>60</td>
<td>1.49</td>
</tr>
<tr>
<td>PMA-5456+</td>
<td>50-6000</td>
<td>14.4</td>
<td>0.8</td>
<td>36</td>
<td>22</td>
<td>60</td>
<td>1.49</td>
</tr>
<tr>
<td>PMA-5453+</td>
<td>50-6000</td>
<td>14.2</td>
<td>0.8</td>
<td>36</td>
<td>20</td>
<td>80</td>
<td>1.49</td>
</tr>
<tr>
<td>PMA-5451+</td>
<td>50-4000</td>
<td>14.9</td>
<td>1.0</td>
<td>36</td>
<td>20</td>
<td>80</td>
<td>1.49</td>
</tr>
<tr>
<td>PMA-545G1+</td>
<td>400-2200</td>
<td>31.3</td>
<td>1.0</td>
<td>34</td>
<td>22</td>
<td>158</td>
<td>4.95</td>
</tr>
<tr>
<td>PMA-545G2+</td>
<td>1100-1600</td>
<td>30.4</td>
<td>1.0</td>
<td>34</td>
<td>22</td>
<td>158</td>
<td>4.95</td>
</tr>
<tr>
<td>PSA-5455+</td>
<td>50-4000</td>
<td>14.4</td>
<td>1.0</td>
<td>32</td>
<td>19</td>
<td>40</td>
<td>1.49</td>
</tr>
</tbody>
</table>
Higher Noise Corner

Unfortunately, moving into smaller process geometries goes in the opposite direction, resulting in a higher 1/f noise corner. This severely impacts the performance of systems utilizing information contained in the area of close-in phase noise around DC. For example, motor controllers of high-power and precision motors use frequencies and its harmonics of only a few hundred kilohertz (kHz). Zero intermediate frequency (0IF) complex receivers may employ carriers with only tens of kHz offset. Thus, the 1/f noise performance of the high-speed ADC is crucial for these applications. As a result, modern high-speed CMOS ADCs, such as the 14-bit, 125-MSPS ADC3244, get outfitted with design enhancements like an internal analog chopper front-end, which combines the low-power CMOS ADC with very good 1/f noise performance.

Chopper Front-End Circuit Implementation

Chopper circuits have been used for more than 30 years. Nowadays a ‘chopper’ refers to many different switching circuits. Originally, the chopper was used to convert a fixed DC input to a variable DC output voltage. The idea of using a chopper circuit with CMOS ADCs is based on the same concept where the unwanted 1/f noise is transferred to a different frequency, as far away as possible from the wanted signal itself (typically to the Nyquist limit) (Figure 1). The ADC in our example uses an analog, passive mixer prior to the actual

Figure 2 • Chopper implementation in a high-speed data converter.

20 GHz Signal Sources

A compact, rugged, and cost effective signal source that packs the performance of a big-box instrument into a module that fits in the palm of your hand or a single PXIe slot.

Military + Commercial

- Frequency 50 MHz to 20 GHz
- Amplitude -30 dBm to +10 dBm
- Low phase noise
- High dynamic range
- Tuning resolution 1 Hz
- USB, SPI, RS-232 & PXIe

Visit us at IMS 2015 Booth #1334

Get info at www.HFeLink.com
Manufacturer of Precision Coaxial Connectors
sgmcsmicrowave.com
1.0mm Features:
Frequency: DC to 110 GHz
Ruggedized construction for repeatability & reliability, Phase matched adapters, Captivated Center Contact, Low VSWR & Insertion loss, Cable Connectors for various semi-rigid & flexible cables, Receptacle configurations including threaded & flanged.

1.85mm Features:
Frequency: DC to 65 GHz
Mechanically compatible with 2.4mm Series, Ruggedized construction for repeatability & reliability, Phase matched adapters, Captivated Center Contact, Low VSWR & Insertion loss, Cable Connectors for various semi-rigid and flexible cables, Receptacle configurations including threaded, PCB & flanged.

2.4mm Features:
Frequency: DC to 50 GHz
Mechanically compatible with 1.85mm Series, Ruggedized construction for repeatability & reliability, Phase matched adapters, Captivated Center Contact, Low VSWR & insertion loss, Cable Connectors for various semi-rigid & flexible cables. Receptacle configurations including threaded, PCB & flanged.

SSMA Features:
Frequency: DC to 34 & 40 GHz
Mechanically compatible with our ASSMA connector series, Ruggedized construction for repeatability & reliability, Reduced size for superior packaging capabilities, Low VSWR & Insertion loss, Cable Connectors for various semi-rigid & flexible cables, Receptacle configurations including threaded & flanged.

7mm Features:
Frequency: DC to 18 GHz
Mates with Precision 7mm Connectors (Sexless/Genderless), Robust Coupling Mechanism, Low VSWR & Insertion loss, Cable Connectors for various semi-rigid & flexible cables. Receptacle configurations including threaded & flanged.

Type “N” Features:
Frequency: DC to 11 & 18 GHz
Ruggedized construction for repeatability & reliability, Captivated Center Contact, Low VSWR & Insertion loss, Cable Connectors for various semi-rigid & flexible cables. Receptacle configurations including threaded & flanged.
2.92mm Features:
Frequency: DC to 40 GHz
Mechanically compatible with SMA & 3.5mm Series,
Ruggedized construction for repeatability & reliability, Phase matched adapters, Captivated Center Contact, Low VSWR & insertion loss, Cable Connectors for various semi-rigid & flexible cables, Receptacle configurations including threaded, PCB & flanged.

3.5mm Features:
Frequency: DC to 34 GHz
Mechanically compatible with SMA & 2.92mm Series,
Ruggedized construction for repeatability & reliability, Phase matched adapters, Captivated Center Contact, Low VSWR & insertion loss, Cable Connectors for various semi-rigid & flexible cables, Receptacle configurations including threaded, PCB & flanged.

SMA Features:
Frequency: DC to 18 & 26.5 GHz
Mechanically compatible with 3.5mm & 2.92mm Series,
Ruggedized construction for repeatability & reliability, Captivated Center Contact, Low VSWR & Insertion loss, Cable Connectors for various semi-rigid & flexible cables, Receptacle configurations including threaded, PCB & flanged.

TNC(A) Features:
Frequency Range: DC to 18 GHz
Ruggedized construction for repeatability & reliability, Captivated Center Contact, Low VSWR & Insertion loss, Cable Connectors for various semi-rigid & flexible cables, Receptacle configurations including threaded & flanged.

Accessories:
SGMC Microwave offers a wide variety of mechanical devices, such as 7mm & Type N support beads, SWIFT Wrenches, 7mm Contacts, Male & Female Dust Caps with & without beaded chains & lanyards. SGMC Microwave is constantly developing newer accessories to support our growing product lines. If you would like a special accessories that we do not currently offer, please let us know, we would be delighted to provide you with a quotation for a custom designed and manufactured accessories.

Assembly Tooling:
SGMC Microwave offers a wide variety of tools to facilitate the attachment of our cable connectors to various coaxial cables. The Connector to Cable attachment integrity is vital to the success of achieving high performance and reliability of the completed assembly. SGMC Microwave is constantly developing newer tools and improving existing tools. If you would like an assembly tool that we do not currently offer, please let us know, we would be delighted to provide you with a quotation for a custom designed and manufactured tool.
<table>
<thead>
<tr>
<th>VSWR</th>
<th>RL (dB)</th>
<th>VSWR</th>
<th>RL (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.010</td>
<td>46.064</td>
<td>1.176</td>
<td>21.843</td>
</tr>
<tr>
<td>1.020</td>
<td>40.086</td>
<td>1.180</td>
<td>21.664</td>
</tr>
<tr>
<td>1.030</td>
<td>36.067</td>
<td>1.182</td>
<td>21.576</td>
</tr>
<tr>
<td>1.040</td>
<td>34.151</td>
<td>1.184</td>
<td>21.489</td>
</tr>
<tr>
<td>1.050</td>
<td>30.714</td>
<td>1.186</td>
<td>21.403</td>
</tr>
<tr>
<td>1.060</td>
<td>29.417</td>
<td>1.188</td>
<td>21.318</td>
</tr>
<tr>
<td>1.070</td>
<td>28.299</td>
<td>1.190</td>
<td>21.234</td>
</tr>
<tr>
<td>1.080</td>
<td>27.318</td>
<td>1.192</td>
<td>21.151</td>
</tr>
<tr>
<td>1.090</td>
<td>26.444</td>
<td>1.194</td>
<td>21.069</td>
</tr>
<tr>
<td>1.100</td>
<td>25.658</td>
<td>1.196</td>
<td>20.988</td>
</tr>
<tr>
<td>1.110</td>
<td>25.510</td>
<td>1.198</td>
<td>20.907</td>
</tr>
<tr>
<td>1.112</td>
<td>25.364</td>
<td>1.200</td>
<td>20.828</td>
</tr>
<tr>
<td>1.114</td>
<td>25.221</td>
<td>1.210</td>
<td>20.443</td>
</tr>
<tr>
<td>1.116</td>
<td>25.081</td>
<td>1.220</td>
<td>20.079</td>
</tr>
<tr>
<td>1.120</td>
<td>24.943</td>
<td>1.230</td>
<td>19.732</td>
</tr>
<tr>
<td>1.122</td>
<td>24.808</td>
<td>1.240</td>
<td>19.401</td>
</tr>
<tr>
<td>1.124</td>
<td>24.675</td>
<td>1.250</td>
<td>19.085</td>
</tr>
<tr>
<td>1.126</td>
<td>24.544</td>
<td>1.260</td>
<td>18.783</td>
</tr>
<tr>
<td>1.128</td>
<td>24.415</td>
<td>1.270</td>
<td>18.493</td>
</tr>
<tr>
<td>1.130</td>
<td>24.289</td>
<td>1.280</td>
<td>18.216</td>
</tr>
<tr>
<td>1.132</td>
<td>24.164</td>
<td>1.290</td>
<td>17.949</td>
</tr>
<tr>
<td>1.134</td>
<td>24.042</td>
<td>1.300</td>
<td>17.692</td>
</tr>
<tr>
<td>1.136</td>
<td>23.921</td>
<td>1.310</td>
<td>17.445</td>
</tr>
<tr>
<td>1.138</td>
<td>23.803</td>
<td>1.320</td>
<td>17.207</td>
</tr>
<tr>
<td>1.140</td>
<td>23.686</td>
<td>1.330</td>
<td>16.977</td>
</tr>
<tr>
<td>1.142</td>
<td>23.571</td>
<td>1.340</td>
<td>16.755</td>
</tr>
<tr>
<td>1.144</td>
<td>23.457</td>
<td>1.350</td>
<td>16.540</td>
</tr>
<tr>
<td>1.146</td>
<td>23.346</td>
<td>1.360</td>
<td>16.322</td>
</tr>
<tr>
<td>1.148</td>
<td>23.235</td>
<td>1.370</td>
<td>16.131</td>
</tr>
<tr>
<td>1.150</td>
<td>23.127</td>
<td>1.380</td>
<td>15.936</td>
</tr>
<tr>
<td>1.152</td>
<td>23.020</td>
<td>1.390</td>
<td>15.747</td>
</tr>
<tr>
<td>1.154</td>
<td>22.914</td>
<td>1.400</td>
<td>15.563</td>
</tr>
<tr>
<td>1.156</td>
<td>22.810</td>
<td>1.410</td>
<td>15.385</td>
</tr>
<tr>
<td>1.158</td>
<td>22.708</td>
<td>1.420</td>
<td>15.211</td>
</tr>
<tr>
<td>1.160</td>
<td>22.607</td>
<td>1.430</td>
<td>15.043</td>
</tr>
<tr>
<td>1.162</td>
<td>22.507</td>
<td>1.440</td>
<td>14.879</td>
</tr>
<tr>
<td>1.164</td>
<td>22.408</td>
<td>1.450</td>
<td>14.719</td>
</tr>
<tr>
<td>1.166</td>
<td>22.311</td>
<td>1.460</td>
<td>14.564</td>
</tr>
<tr>
<td>1.168</td>
<td>22.215</td>
<td>1.470</td>
<td>14.412</td>
</tr>
<tr>
<td>1.170</td>
<td>22.120</td>
<td>1.480</td>
<td>14.264</td>
</tr>
<tr>
<td>1.172</td>
<td>22.027</td>
<td>1.490</td>
<td>14.120</td>
</tr>
<tr>
<td>1.174</td>
<td>21.934</td>
<td>1.500</td>
<td>13.979</td>
</tr>
</tbody>
</table>
Planar Monolithics Industries, Inc.
Transceiver Micro-Miniaturization
100 MHz to 18 GHz 3U Open VPX Architecture

- 100 MHz to 18.0 GHz Transceiver
- Less Than 30 Watt Total Power Consumption
- Time Gated SDLVA for PulseBlanking
- Up to 4 GHz Instantaneous Bandwidth
- -80 to -10 dBm Input Dynamic Range
- Customizable Switched Filter Banks
- 0 to +10 dBm Transmit Power
- 100 ns Switching Speed
- VITA 67 RF Interface
- CW Immunity

Over 300% Smaller than Individual Components while Maintaining 100 dB Isolation

3U Open VPX Card 160 mm x 100 mm x 10 HP (6.30“ x 3.94“ x 1.92“)

Visit us at Booth #1927
International Microwave Symposium
17-22 May 2015, Phoenix AZ

West Coast Operation:
4921 Robert J. Mathews Pkwy, Suite 1
El Dorado Hills, CA 95762 USA
Tel: 916-542-1401 Fax: 916-265-2597
ISO9001:2008 REGISTERED
Email: sales@pmi-rf.com
Website: www.pmi-rf.com

East Coast Operation:
7311-F Grove Road
Frederick, MD 21704 USA
Tel: 301-662-5019 Fax: 301-662-1731
ISO9001:2008 REGISTERED

Hermetic Sealing, High Reliability to Mil-Std-883, Small Quantity Requirements accepted & we offer Custom Designs too.
Choosing the right RF power amplifier is critical. But, thanks to AR Modular RF, it’s an easy choice. Our RF power amplifiers give you exactly the power and frequency you need.

With power up to 5kW; and frequency bands from 200 kHz to 6 GHz.

They also deliver the performance and the dependability required for any job. When everything depends on an amplifier that performs without fail, time after time, you can count on AR Modular RF. These amplifiers are compact and rack-mountable; and versatile enough to power all kinds of units, for easy field interchangeability.

For military tactical radios, wireless communication systems, homeland defense systems, high-tech medical equipment, sonar systems, and so much more, your best source for RF power amplifiers is AR Modular RF.

To get the power you need, the features you want, and the performance you demand, visit us at www.arworld.us or call us at 425-485-9000.

ADC-sampling network to accomplish this purpose.

High-fidelity audio converters use the same concept, but employ a high-resolution (typically 24-bit) delta-sigma ADC, versus a pipeline ADC.

The low-frequency input signal first gets shifted to Fs/2 using an on-chip passive mixer that operates at half the ADC clock frequency. Next the input signal gets sampled, as with any other data converter, except the low-frequency input signal now resides at Fs/2. In the sampling process, the unwanted 1/f noise of the ADC-sampling network gets added to the spectrum of the input signal. This operation is followed by a mixing block in the digital domain. The output spectrum is mixed once more with Fs/2, which now shifts the original wanted signal back near DC, and the 1/f noise near Fs/2. As a result of this exercise, the input signal is where it is expected and unaffected by the unwanted 1/f noise, which is placed on the opposite end of the Nyquist zone (Figure 2). At this stage, any 1/f noise contribu-

Figure 3 • High-speed CMOS ADC compared with off (a)/on (b) chopper front-ends.

ADC-sampling network to accomplish this purpose. High-fidelity audio converters use the same concept, but employ a high-resolution (typically 24-bit) delta-sigma ADC, versus a pipeline ADC.

The low-frequency input signal first gets shifted to Fs/2 using an on-chip passive mixer that operates at half the ADC clock frequency. Next the input signal gets sampled, as with any other data converter, except the low-frequency input signal now resides at Fs/2. In the sampling process, the unwanted 1/f noise of the ADC-sampling network gets added to the spectrum of the input signal. This operation is followed by a mixing block in the digital domain. The output spectrum is mixed once more with Fs/2, which now shifts the original wanted signal back near DC, and the 1/f noise near Fs/2. As a result of this exercise, the input signal is where it is expected and unaffected by the unwanted 1/f noise, which is placed on the opposite end of the Nyquist zone (Figure 2). At this stage, any 1/f noise contribu-
THE FUTURE IS CALLING...HOW WILL YOU CONNECT TO IT?

4.1/9.5 Mini DIN

Delta’s 4.1/9.5 Mini DIN series of coaxial connectors were developed to meet the growing demands of today’s high performance mobile communications systems.

The 4.1/9.5 Mini DIN has an operational frequency range of DC-14 GHz, offers excellent VSWR performance and Low Passive Intermodulation (Low PIM) < -165 dBC, making it ideally suited for use in Base Stations, Distributed Antenna Systems (DAS) and Small Cell applications.

Features
- IEC standardization
- 30% smaller and lighter compared to 7/16 series
- Reduced center to center spacing
- Albaloy plating

Benefits
- Global standard interface
- Increased package density
- Low PIM: < -165 dBC

Get your copy of our new 4.1/9.5 Mini DIN catalog, contact Delta today!

(978) 927-1060 • www.deltarf.com
Flicker Noise

Measurement Comparison of Chopper Front-End

A comparison of the fast Fourier transform (FFT) output spectrum of the ADC in our example with the internal chopper enabled and disabled is illustrated in Figure 3. The low frequency 1/f noise is clearly visible when the chopper is disabled. Once the chopper is enabled, the flicker noise around DC is shifted to Fs/2, while the input signal remains untouched at 10 MHz. However, the FFT spectrum also reveals an additional byproduct of the chopper circuit. Besides shifting the input spectrum, the passive mixer generates a tone at Fs/2, also known as the local oscillator (LO) feedthrough, since the LO input is coupled into the output spectrum. However, when digital post-processing filters are implemented on the data, a likely scenario when analyzing DC and near-DC information, the transposed 1/f noise and LO feedthrough will be rejected.

The low-frequency improvement from the chopper circuit becomes even more obvious when overlaying the two FFT plots directly on top of each other and changing frequency axis to a log scale (Figure 4). This reveals the ADC’s 1/f noise corner of about 10 MHz, and clearly shows the noise floor improvement between 3 kHz and 10 MHz.

Disadvantages of Employing a Chopper Front-End

The primary drawback for which a system engineer needs to be cognizant is the LO feedthrough when using a high-speed ADC with a chopper input. A large tone at Fs/2 can potentially limit an automatic gain control (AGC) loop when using a large amount of front-end gain for capturing a very small amplitude input signal. In that application, the LO feedthrough needs to be removed with a digital filter prior to the AGC function.

Since the mixer is passive, the additional power consumption from the chopper is very minimal and no additional signal-to-noise ratio (SNR) or spurious free dynamic range (SFDR) degradation should be expected.

Summary

As modern high-speed data converters are taking advantage of smaller process nodes for lower power consumption and faster clocking rates, ADC design engineers are implementing circuit enhancements to improve the few disadvantages associated with finer CMOS process geometries. A chopper front-end, as implemented in the ADC3244 for example, is a great way to drastically improve the unwanted flicker noise for applications where information of interest is in the very low frequency range.

References

2. Download the ADC3244 datasheet
3. Here’s more information about TI’s high-speed data converters
4. TI E2E™ high-speed data converter forum

About the Author

Thomas Neu is a systems engineer for TI’s high-speed data converters group where he provides applications support. Thomas received his MSEE from Johns Hopkins University, Baltimore, Maryland. He can be reached at ti_thomasneu@list.ti.com.
SOLID STATE MICROWAVE POWER GENERATORS

For Industrial, Scientific and Medical Equipment

Typical Applications
- High Power Plasma Generators
- For Semiconductor Manufacturing
- Heating of Food
- Chemical Analysis Equipment
- Specialized Medical Scalpels
- Medical Thermotherapy

THE NEXT GENERATION OF 2.45 GHz SSPOs™ & High Power SSPAs

Solid State Power Oscillators (SSPO)
Output powers of up to 200 W at 2.45 GHz

- Power control from 1 W to Rated Power; 28 VDC Bias Voltage Required

Frequency Options
- 2.45 GHz
- 915 MHz

Output Power Options
- 50 W
- 100 W
- 200 W

Solid State Power Amplifiers (SSPA)
Output power of up to 3 kW at 2.45 GHz

- Air cooling fan or, if required, water cooling is included
- Power supply with 200 VAC input is included
- Available safety options include input protection, alarms and shut-off protection
- Built-in phase locked oscillator source is available on request

Frequency Options
- 2.45 GHz

Output Power Options
- 500 W
- 1 kW
- 2 kW
- 3 kW

Scan code to learn more or visit: www.cel.com/TK-HFE
Feedback Amplifier

MMIC Broadband Feedback Amplifiers

By John E. Penn

Abstract
A feedback amplifier is a simple design approach for broadband gain stages where noise figure and power efficiency are not a primary driver. Four variations of a simple one stage feedback amplifier were designed using a 0.13 um GaAs Pseudomorphic High Electron Mobility Transistor (PHEMT) process from TriQuint Semiconductor. The design and fabrication of these circuits was performed during the Fall 2013 Johns Hopkins University Monolithic Microwave Integrated Circuit (MMIC) Design Course, taught by the author. In these very compact amplifier designs, an external bias was required for the drain supply. A modification to the feedback designs to include a broadband DC supply using a second PHEMT as an active load is also presented, both simulations and layouts.

Resistive Feedback Broadband Amplifier

One way to achieve broadband gain with an inverting transistor, such as a GaAs MESFET or PHEMT, is to use resistive feedback to achieve octaves or even a decade of bandwidth. Figure 1 shows the simplest schematic of the feedback amplifier with the two key components that can be tuned for the desired return loss, stability, and gain characteristics: the value of the feedback resistor, and size of the transistor. In this case, a MMIC PHEMT can be varied in total periphery (size = width of gate fingers * number of gate fingers). This simple arrangement ignores the DC bias, but it is a good starting point to simulate the small signal performance without worrying about bias yet.

If you only have a non-linear model, then it is a good time to add a large capacitor to DC block the drain bias from the gate bias in the feedback path. A 4 pF capacitor was added to the resistive feedback path for these designs. Two basic feedback amplifier variations were created, one used a standard 6x50um PHEMT, and the other a smaller 4x38um PHEMT. For this process, a large shunt resistor on the gate will provide part of a

RES
ID=R1
R=Rfb Ohm
Rfb=310

SUBCKT
ID=S3
NET="D6x50CS_3_00V_30_00mA"

PORT
P=1
Z=50 Ohm

PORT
P=2
Z=50 Ohm

Figure 1 • Simplest Schematic of the Feedback Amplifier.
QUALITY, PERFORMANCE AND RELIABILITY IN PRECISION COAXIAL CONNECTORS

EDGE LAUNCH CONNECTORS

BETWEEN SERIES ADAPTERS

BULKHEAD & PANEL ADAPTERS

IN SERIES ADAPTERS

CABLE CONNECTORS

CUSTOM DESIGNS

ADAPTERS · CABLE CONNECTORS · RECEPTACLES · CUSTOM DESIGNS

Including These Connector Series

<table>
<thead>
<tr>
<th>Size</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.85mm</td>
<td>DC-65 GHz</td>
</tr>
<tr>
<td>2.4mm</td>
<td>DC-50 GHz</td>
</tr>
<tr>
<td>2.92mm</td>
<td>DC-40 GHz</td>
</tr>
<tr>
<td>3.5mm</td>
<td>DC-34 GHz</td>
</tr>
<tr>
<td>7mm</td>
<td>DC-18 GHz</td>
</tr>
<tr>
<td>SSMA</td>
<td>DC-40 GHz</td>
</tr>
</tbody>
</table>

ISO 9001:2008

SGMC Microwave — The name to count on for Quality, Performance and Reliability! Please contact us today by Phone, Fax or Email.

Visit Us In Phoenix!
IMS Booth # 2129
broadband bias with VGS=0V, while the drain bias was expected to be an external bias tee for these compact layouts; about the size of a PHEMT layout for probe testing (see Figure 2).

Symmetric Layout of Feedback Broadband Amplifier

Creating symmetry in microwave circuit layout is typically desirable. A new design was laid out with the RC feedback path split into two dual parallel paths which forced a longer connection to ground. This additional source inductance was reduced by using two parallel substrate vias (Figure 3). So while the single RC feedback versus the symmetric dual parallel RC feedback design is not quite an “apples to apples” comparison, they both resulted in broadband stable amplifier designs.

Measured Small Signal Performance

Both the symmetric and single RC feedback amplifiers resulted in nearly identical performance. Figure 4 shows the measured s-parameters and noise figure (green) of the 6x50um PHEMT based amplifiers, resulting in a gain of 16 dB at 1 GHz that gradually drops to 8 dB at 15 GHz. The noise figure was about 1.5 dB from 1 to 6 GHz, gradually rising to 2 dB at 15 GHz. Another pair of the single and symmetric RC feedback amplifier designs was created using a PHEMT of half the size, e.g. 4x38um, which consumes half the DC power of the 6x50um design(s). Performance was similar, though the noise figure was slightly higher and the gain slope falloff is more gradual as shown in Figure 5.

For the 4x38um amplifier, the gain was measured as 14 dB at 1 GHz gradually dropping to 9.5 dB at 15 GHz. The noise figure was about 1.7 dB from 1 to 6 GHz, gradually rising to 2.1 dB at 15 GHz. These measured results agreed well with the original Microwave Office (MWO) analytical simulations, as well as EM simulations using Axiem, Momentum, and Sonnet. Figures 6 and 7 compare the gain (magenta) and noise figure (blue) mea-
TE Connectivity offers the broadest range of RF Coaxial Interconnect products in the industry today. Our RF Coax portfolio is built on our strong heritage of the industry's leading brand names such as AMP, M/A-COM, Microdot, and Tyco Electronics, as well as product lines formerly known as Omni-Spectra and Adams Russell. For more than 25 years, Microwave Components has been delivering these quality products and superior technical support to the industry with an extensive inventory of commercial and Mil Approved products.

Call us today and put our experience to work for you...

Phone: (888) 591-4455 or (772) 286-4455 Fax: (772) 286-4496
E-mail: admin@microwavecomponentsinc.com
Web Site: www.microwavecomponentsinc.com

AMP, Microdot, Tyco Electronics, TE Connectivity, TE Connectivity (logo) and TE (logo) are Trademarks

AS 9120
ISO 9001:2000
CERTIFIED
Feedback Amplifier

Figure 4 • Measured Small S-Parameters for Single (1) and Symmetric (2) 6 x 50um Feedback Amplifiers.

measurements (solid) versus simulations (dotted) for the 4x38um and 6x50um feedback amplifiers. The “break” in the noise figure measurement at 6 GHz is due to using two different instruments for the noise figure measurements, one up to 6 GHz, and the other starting at 6 GHz.

Broadband DC Supply Using an Active Load (PHEMT)

Biasing of the original broadband feedback amplifiers assumed that the drain DC bias was provided through an external bias tee. The gate bias for these devices was already broadband, supplied by a large shunt resistor (2K) to ground, since these PHEMTs perform well with VGS=0V. So how do you add a broadband biasing circuit? One solution that keeps the layout compact and provides a bias that is tolerant to variations in processing, is to use a

Figure 5 • Measured Small S-Parameters for Single (1) and Symmetric (2) 4 x 38um Feedback Amplifiers.
second PHEMT as an active load to bias the amplifier. The drain voltage can be supplied and split across two equal sized PHEMTs.

Figure 8 shows a simple schematic of the feedback circuit which now has an active load, and two additional capacitors. At the input pad for the drain voltage (Vdd), a shunt cap (4 pF) to ground isolates the RF match from the external DC connection. A second capacitor (4 pF) is used to DC block the drain voltage of the amplifier from the RF output. The size of these capacitors is a tradeoff of size versus the low frequency rolloff of the gain. Also, the active load could be changed to be smaller or larger than the PHEMT used for the amplification. A smaller active load reduces the current consumption and lowers the noise figure, but makes an unequal split of the Vdd supply voltage, reducing the voltage swing or output power of the amplifier. Conversely, a larger active load increases the current consumption but increases the proportion of Vdd split between the two PHEMTs, thus improving efficiency but with an increase of noise figure. Simulations were performed using an active load of 60% and 150% of the nominal 4x38um or 6x50um size used in the feedback amplifier with little change in the small signal performance, but with a small effect on noise figure.

For example, active loads of 6x30um, 6x50um, and 6x75um, with the 6x50um feedback amplifier resulted in a DC bias ranging from 2.1V at 20 mA, to 3V at 27mA, to 3.7V at 33mA with a 6V Vdd supply. The gain did not change much, but the noise figure at 3 GHz simulated over a range of 1.8 dB, 2.0 dB, and 2.3 dB over these same active loads as the drain current increased. Note that the active load provides a small compact broadband DC bias, but does increase the noise figure from the 1.4 dB in the original designs that required an external drain DC bias.

The use of an active load to bias the broadband feedback amplifier results in a very compact layout, though there is some increase in noise figure, and a rolloff of low frequency gain below 1 GHz, plus a slight drop in gain across the whole band. Figure 9 shows the simulated s-parameters of the broadband DC supplied feedback amplifier (solid) versus the original design (dotted) using an external bias tee. Figure 10 shows the compact layout with the addition of a Vdd pad (nominally 6V), and the same ground-signal-ground (GSG) probe test RF input and output. Another advantage of the active load is that using another PHEMT for the DC bias makes the amplifier design robust to process variation.

Summary

Feedback amplifiers can provide very broadband gain with moderate noise figure and efficiency, in a simple compact layout. One simple approach to supplying DC bias over a broadband is to use a PHEMT active load. This approach can also be very small but will have some negative impact on the noise figure and efficiency. For
any application requiring a simple broadband gain block where noise figure and efficiency are not primary drivers, feedback is a good approach for the design tradeoff of bandwidth, gain, return loss, stability, noise figure, and efficiency.

Acknowledgements
I would like to acknowledge the support of TriQuint Semiconductor for fabricating designs for JHU students since 1989. Software support for these JHU designs is provided by Applied Wave Research/National Instruments (AWR/NI), Keysight Technologies, and Sonnet Software.

About the Author
John E. Penn received a B.E.E. from the Georgia Institute of Technology in 1980, an M.S. (EE) from Johns Hopkins University (JHU) in 1982, and a second M.S. (CS) from JHU in 1988. Since 1989, he has been a part-time professor at Johns Hopkins University where he teaches RF & Microwaves I & II, MMIC Design, and RFIC Design. Email: profpenn@gmail.com.
CST STUDIO SUITE 2015

From Components to Systems. Simulate, Optimize, Synthesize.

From the first steps to the finishing touches, CST STUDIO SUITE® is there for you in your design process. Its tools allow engineers to develop and simulate devices large and small across the frequency spectrum. The powerful solvers in CST STUDIO SUITE 2015 are supplemented by a range of new synthesis and optimization tools, which are integrated directly into the simulation workflow. These can suggest potential starting points for component design, allow these components to be combined into systems, and finally analyze and fine-tune the complete systems. Even the most complex systems are built up from simple elements. Integrate synthesis into your design process and develop your ideas.

Choose CST STUDIO SUITE – Complete Technology for EM Simulation.
Product Highlights

Power Dividers

2-Way & 4-Way, 30W Wilkinson Power Divides are optimized for excellent performance across all Microwave and Millimeter-wave bands from 6.000 GHz - 26.50 GHz in (SMA). Also, Resistive 2-way splitters covering DC - 26.5 GHz (2.92mm). Also available are Attenuators, Isolators, Terminations & Couplers. Rugged construction makes them ideal for Telecommunications, Aerospace & Test Equipment systems.

MECA Electronics
e-meca.com

Directional Coupler

Mini-Circuits’ ZFDC-20-33+ is a 50Ω, 20 to 3000 MHz Directional Coupler that features: very wideband, 20 to 3000 MHz; excellent directivity, 20 dB typ.; excellent mainline loss, 1.0 dB typ.; rugged shielded case. Applications: cellular; GPS; instrumentation; communication receivers & transmitters.

Mini-Circuits
minicircuits.com
Mini-Circuits’ RF power sensors turn almost any Windows® or Linux® based computer into a low-cost testing platform for all kinds of RF components and applications. To give you even more options, our new PWR-8GHS-RC model allows easy remote signal monitoring and data acquisition with USB and Ethernet control.

With 7 different models in stock offering measurement speeds as fast as 10 ms*, dynamic range as wide as -35 to +20 dBm†, and measurement capability for continuous wave and modulated signals, chances are, we have a power sensor to meet your needs and fit your budget!

Our user-friendly GUI provides a full range of measurement tools including measurement averaging, time-scheduled measurements, multi-sensor support, and measurement applications supporting RF testing of couplers, filters, amplifiers and more! View data and graphs on-screen or export to Excel® for reporting and data analysis.

All Mini-Circuits power sensors fit in your pocket and come supplied with all the accessories you need for immediate use right out of the box. Visit minicircuits.com and place your order today for delivery as soon as tomorrow!

Model Power Frequency Control Price $ ea. qty. (1-4)

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Measurement</th>
<th>Frequency MHz</th>
<th>Interface</th>
<th>Price $ ea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR-2.5GHS-75 (75Ω)</td>
<td>CW</td>
<td>0.1 to 2500</td>
<td>USB</td>
<td>795.00</td>
</tr>
<tr>
<td>PWR-4GHS</td>
<td>CW</td>
<td>0.009 to 4000</td>
<td>USB</td>
<td>795.00</td>
</tr>
<tr>
<td>PWR-6GHS</td>
<td>CW</td>
<td>1 to 6000</td>
<td>USB</td>
<td>695.00</td>
</tr>
<tr>
<td>PWR-8GHS</td>
<td>CW</td>
<td>1 to 8000</td>
<td>USB</td>
<td>899.00</td>
</tr>
<tr>
<td>PWR-8GHS-RC</td>
<td>CW</td>
<td>1 to 8000</td>
<td>USB & Ethernet</td>
<td>999.00</td>
</tr>
<tr>
<td>PWR-8FS</td>
<td>CW</td>
<td>1 to 8000</td>
<td>USB</td>
<td>999.00</td>
</tr>
<tr>
<td>PWR-4RMS</td>
<td>True RMS</td>
<td>50 to 4000</td>
<td>USB</td>
<td>1169.00</td>
</tr>
</tbody>
</table>

*Measurement speed as fast as 10 ms for model PWR-4-FS. All other models as fast as 30 ms.
†Dynamic range as wide as -35 to +20 dBm for model PWR-4RMS. All other models as wide as -30 to +20 dBm.
Excel is a registered trademark of Microsoft Corporation in the US and other countries.

Neither Mini-Circuits nor Mini-Circuits Power Sensors are affiliated with or endorsed by the owners of the above-referenced trademarks.
Product Highlights

Power Meter

The 4530 series RF Peak Power Meter can make Peak, CW Power and RF Voltage measurements at high speed from 10 Hz to 40 GHz. Features:
- Frequency Range: 10 Hz to 40 GHz
- Dynamic Range: Peak Power >60 dB
- CW Power -90 dB
- Synchronous/Asynchronous Triggering
- Dual-channel statistical measurements (CDF/PDF)
- Modulation bandwidth to 20 MHz
- GPIB - SCPI/RS232 commands.

Richardson RFPD
richardsonrfpd.com

Mixer

Richardson RFPD announced availability and design support for a new low passive mixer from M/A-COM Technology Solutions. The MAMX-011021 features 8 dB of conversion loss and +23 dBm of input intercept point (IIP3) and is offered in a 1.5 mm x 1.2 mm TDFN 6-lead plastic package. The RF, LO and IF frequency ranges are 5–35 GHz, 3–33 GHz and DC–4.5 GHz, respectively.

Richardson RFPD
richardsonrfpd.com

Hi-Q Capacitors

Reliable • Fast Turnarounds • Competitive Pricing

RF/Microwave & HF/UHF
Low ESR/ESL

Case Size: 0505, 1111 & EIA sizes

NEW Broadband

01005BB: 16kHz - 67GHz
• Insertion Loss: < 1db
• Value: 100nF
• 4 WVDC

0201BB: 16kHz - 65GHz
• Insertion Loss: < 1db
• Value: 100nF
• 16 WVDC

0402BB: 16kHz - 35GHz
• Insertion Loss: < 1db
• Value: 100nF
• 25 WVDC

NEW Power Assemblies

Aerospace • Aviation • Military
Commercial • Medical
Telecommunications

• Unmatched customer service
• Online store for immediate availability
• Design kits in stock
• Inventory programs

Call us today
631-425-0938
sales@passiveplus.com

Get info at www.HFeLink.com
Product Highlights

LCR Meter

Keysight Technologies introduced three low-frequency options for its E4982A LCR meter. With these new options, the E4982A is well suited for RF inductor, coil and EMI filter manufacturers that are required to perform impedance testing at various frequencies. The options cover the 1 MHz to 300 MHz (Opt. 030), 500 MHz (Opt. 050) and 1 GHz (Opt. 100) frequency ranges.

Keysight Technologies
keysight.com

Sensor Connector Option

LadyBug now offers an SMA female connector option on its LB5918A high-accuracy, true RMS 1 MHz to 18 GHz power sensor. The SMA connector (option OSF) is suitable for many applications and is ideal for customers that require an RF cable connection to the sensor. Combined with LadyBug’s No Zero Just Measure, patented no-zero no-cal technology, the new connector adds even more flexibility for users.

LadyBug Technologies
ladybug-tech.com
Epoxy

Master Bond EP42HT-2LTE is often chosen for a variety of bonding, sealing, coating, and select casting applications in the electronics, aerospace, optical and specialty OEM industries. This two component epoxy has a flowable paste consistency that enables precise alignment with minimal fixturing. It cures at room temperature or more quickly with the addition of heat.

Master Bond
masterbond.com

OML introduced the Low Power VNA frequency extension series; VxxVNA2-LP. Currently available in waveguide bands from 50 GHz to 110 GHz, this model offers a max output of 0 dBm, typical raw directivity of 37 dB and typical dynamic range of 110 dB. Contact OML for more details.

OML
omlinc.com

<table>
<thead>
<tr>
<th>Freq (GHz)</th>
<th>0.1~10</th>
<th>10~20</th>
<th>20~40</th>
<th>40~50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psat (dBm)</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>P1dB (dBm)</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>S21 (dB)</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>S11 (dB)</td>
<td>-15</td>
<td>-15</td>
<td>-10</td>
<td>-8</td>
</tr>
<tr>
<td>S22 (dB)</td>
<td>-12</td>
<td>-10</td>
<td>-8</td>
<td>-8</td>
</tr>
<tr>
<td>S12 (dB)</td>
<td>-30</td>
<td>-50</td>
<td>-50</td>
<td>-50</td>
</tr>
<tr>
<td>NF (dB)</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

• Clean power and gain over 0.1~50 GHz
• Gain >25 dB (30 dBm saturated power output)
• A differential voltage proportional to output power, is externally provided.
• Universal Wall Mount 12VDC power included
• Woman Owned Small Business
• 3 Year New Product Warranty

VIDA Products Inc
3551 Westwind Blvd.,
Santa Rosa, CA 95403
Phone: 707-541-7000
info@vidaproducts.com
www.vidaproducts.com

Get info at www.HFeLink.com
LNA

The APT3-05400590-1010-LS-D4 is a low noise amplifier with super-low noise figure (<0.9dB, 0.7dB typical). Lower NF options are also available with custom Flatness, VSWR, P1dB, and packaging. An internal limiter at the input offers protection of up to 2W CW of RF input power over the full band. The high performance is an example of AmpliTech’s industry-leading low-noise design.

AmpliTech
amplitech.com

Mixer

Model SFB-33333310-2828SF-M1 is a full waveguide band, high input P-1dB double-balanced mixer. The mixer exhibits input +9 dBm P-1dB and 10 dB conversion loss in the frequency of 26.5 to 40 GHz. It also offers very low harmonic products. The 2RF-LO and 2LO-2RF products are -40 dBc typical relative to its fundamental product. In addition, the mixer has 15 dB or better port to port isolation.

SAGE Millimeter
sagemillimeter.com
Design Software

V12 NI AWR Design Environment/Visual System Simulator (VSS) now adds support for the design and analysis of phased arrays as well as for their implementation in a system of antenna elements. Seamless system and circuit level co-simulation is readily available: users can use antenna and component characterizations obtained from EM design tools (AXIEM or Analyst), or from measurements, and place them into the desired array configuration.

NI AWR
awrcorp.com

VNA

Copper Mountain Technologies will unveil a high-performance vector network analyzer series at its booth # 3424 at the International Microwave Symposium. These products offer faster measurement speeds while maintaining a wide dynamic range. Plus, a unique combination of size and speed make these forthcoming VNAs optimal for fast production and BTS filter tuning.

Copper Mountain Technologies
coppermountaintech.com
Product Highlights

EMF Measurement
AR’s Model SM400K and SM40G are solutions for measurement and analysis of electromagnetic field safety applications. These portable instruments operate over a wide range of frequencies while maintaining a small, handheld footprint. They record the temperature of the surrounding environment as well as its GPS coordinates which can later be viewed through mapping software.

AR RF/Microwave Instrumentation arworld.us

Switches
Fairview Microwave announced a new portfolio of electromechanical relay switches that cover ultra-broadband and millimeter-wave frequencies up to 40 GHz. They are guaranteed to perform up to 2 to 10 million life cycles, which make them ideal for applications related to defense, radar, wireless communications, satellite communications, test and measurement and more.

Fairview Microwave fairviewmicrowave.com
Power Divider

Model series 151-215-XXX is a family of resistive power dividers in 2, 4, 6 and 8 way configurations. These 50 Ohm, 1 watt average power devices have an operating frequency range of DC - 6 GHz. Insertion loss above theoretical loss is + 1.0 dB nominal for 2 and 4 way configurations. Insertion loss above theoretical loss for 6 and 8 way configurations is + 1.0 dB nominal DC- 5 GHz and + 1.6 dB nominal 5 - 6 GHz.

BroadWave Technologies
broadwavetechnologies.com

Power Supply

Keysight Technologies introduced four performance options for its Advanced Power System (APS) N6900 Series DC power supplies. In conjunction with the power supply’s VersaPower architecture, the new options boost test-system versatility and make it easy for test engineers to tune power supply capability. The N6900 options enable engineers to meet their ATE testing needs without paying for more capability than they require.

Keysight Technologies
keysight.com
NEW FOR IMS2015!

The RF Boot Camp is a new program debuting at IMS that will focus on providing an introduction to RF Basics. Whether you’re new to the industry, looking to refresh your current skill set or gain more practical experience, this course is for you!

The RF Boot Camp features multiple presenters from industry and academia presenting on a variety of topics critical to successful RF engineering, including:

- Network Analysis
- Modular Instruments
- Signal Generation and Analysis
- RF Simulation Fundamentals
- Impedance Matching Fundamentals
- Introduction to Simulation-Based GaN PA Design
- Understanding Basic RF Analog Receiver Design and Analysis.

Wednesday, 20 May, 2015

RF Boot Camp - 8:00am-2:00pm
Exhibition - 2:00pm-6:00pm
Industry Hosted Reception - 5:00pm-6:00pm

In addition to presentations and discussions, test equipment will be on hand for demonstrations and visualization.

For more information please visit:
ims2015.org/technical-program/rf-boot-camp

Register today and receive a 50% off coupon to share with a colleague or friend who has never attended IMS! (restrictions apply)

Visit ims2015.org for complete program details.
POWER SPLITTERS COMBINERS as low as 79¢ from 2 kHz to 18 GHz NOW!
The Industry's Largest Selection includes THOUSANDS of models, from 2 kHz to 18 GHz, at up to 300 watts power, in coaxial, flat-pack, surface-mount and rack-mount housings for 50 and 75 Ω systems. From 2-way through 48-way designs, with 0°, 90°, or 180° phase configurations, Mini-Circuits power splitters/combiners offer outstanding performance for insertion loss, isolation, and VSWR. Decades of experience with multiple technologies make it all possible, from core & wire, microstrip, and stripline, to semiconductors and LTCC ceramics. Get easy-to-find, detailed data and performance curves, S-parameters, outline drawings, PCB layouts, and everything else you need to make a decision quickly, at minicircuits.com. Just enter your requirements, and our patented search engine, Yoni 2, searches actual test data to find the models that meet your needs. All Mini-Circuits catalog models are in stock, continuously replenished, and backed by our 1-year guarantee. We even list current stock quantities and real-time availability, as well as pricing, to help our customers plan ahead and make quick decisions. So why wait? Take a look at minicircuits.com today!
POWER SPLITTERS/COMBINERS

Now! from 2 kHz to 18 GHz as low as 79¢

The Industry’s Largest Selection includes THOUSANDS of models, from 2 kHz to 18 GHz, at up to 300 watts power, in coaxial, flat-pack, surface-mount and rack-mount housings for 50 and 75Ω systems.

From 2-way through 48-way designs, with 0°, 90°, or 180° phase configurations, Mini-Circuits power splitters/combiners offer outstanding performance for insertion loss, isolation, and VSWR. Decades of experience with multiple technologies make it all possible, from core & wire, microstrip, and stripline, to semiconductors and LTCC ceramics.

Get easy-to-find, detailed data and performance curves, S-parameters, outline drawings, PCB layouts, and everything else you need to make a decision quickly, at minicircuits.com. Just enter your requirements, and our patented search engine, Yoni2, searches actual test data to find the models that meet your needs.

All Mini-Circuits catalog models are in stock, continuously replenished, and backed by our 1-year guarantee. We even list current stock quantities and real-time availability, as well as pricing, to help our customers plan ahead and make quick decisions.

So why wait? Take a look at minicircuits.com today!

RoHS Compliant
Product availability is listed on our website.

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com
Product Highlights

Cable Analyzer

Anritsu introduced a Vector Voltmeter Mode (VVM) for its Microwave Site Master™ S820E cable and antenna analyzer that allows it to be used as a drop-in replacement for legacy Vector Voltmeter instruments. With the ability to provide full A/B and B/A ratio capability without additional and expensive VNA options, it is a compact, durable, cost-efficient single-instrument solution to make key field measurements.

Anritsu Company
anritsu.com
Frequency SYNTHESIZERS
Model SLSM5, High Performance, low cost synthesizers now available from stock in bands to 32 GHz

- Frequency Steps 1 kHz
- Low phase noise and spurious
- 10 MHz Ext. or Int. Reference (±0.5 PPM)
- Control via RS-485, Multi Drop
- Miniature Assembly (2.5” X 2.5” X 0.6”)

Low cost custom designs are our specialty

www.luffresearch.com
sales@luffresearch.com
Tel: (516) 358-2880 Fax: (516) 358-2757

Waveguide & Coax Materials Measurements Setups

Measure
- Mu
- Epsilon
- Resins
- Foams
- Ferrites
- Magrams

0.1 - 20+ GHz

www.astswitch.com
754 Fortune Cr, Kingston, ON K7P 2T3, Canada.
613 384 3939
info@astswitch.com

When only the best will do

RF Bay, Inc.
19225 Orbit Drive, Gaithersburg, MD 20879
Tel: (301) 880-0921, Fax: (301) 560-8007, Mobile: (240) 645-8591
Email: sales@rfbayinc.com, Website: www.rfbayinc.com

10GHz Divide by 13 Prescaler
- Low Noise Amplifier
- Power Amplifier
- Frequency Divider
- Frequency Doubler
- Frequency Mixer

850-950MHz 10W Power Amplifier

100kHz - 10GHz RF Amplifier
- Voltage Control Oscillator
- Phase Locked Oscillator
- Up/Down Converter
- RF Power Detector
- RF Switches

Frequency SYNTHESIZERS
- For Applications up to 32 GHz
- Single and multi-loop designs
- Low phase noise and spurious

Phase-Locked OSCILLATORS
- Low phase noise and spurious
- DROs to 32 GHz
- CROs to 5 GHz
- PLXOs to 1.4 GHz

Low cost custom designs are our specialty

LUFF RESEARCH
www.luffresearch.com
sales@luffresearch.com
Tel: (516) 358-2880 Fax: (516) 358-2757

For Bonding and Sealing
EP46HT-1AO Epoxy
- Thermal conductivity: 9-10 BTU-in/ft²·hr·°F
- Electrically insulative
- Serviceability: -100°F to +550°F
- Tg > 215°C

MASTERBOND
www.masterbond.com
Isolators

Isolators optimized for excellent performance across Microwave and Millimeter-wave (K, Ku & Ka bands) covering 18.0 - 26.5GHz, 27.0 - 31.0GHz & 26.5 - 40.0GHz in 2.92 mm connectors. Also available are Attenuators, Power Dividers, Terminations & Couplers. Their rugged construction makes them ideal for Telecommunications, Aerospace & Test Equipment systems. Made in the USA – 36 month warranty.

MECA Electronics
e-meca.com

Synthesizer

The popular QuickSyn Lite frequency synthesizers are now extended to millimeter-wave. The new synthesizer modules employ the same revolutionary phase-refining technology that all QuickSyn products use to enable fast switching speed, low phase noise, compact size, and low cost. They are available in three bands—27 to 40 GHz, 50 to 67 GHz, and 76 to 82 GHz—and are designed to supply medium power output.

NI Microwave Components
ni-microwavecomponents.com
Product Highlights

DDR4 App Note
This new application note covers both the challenges and the solutions for DDR4 compliance testing, including specific solution examples. Included are insights into test requirements, accurate testing techniques, and JEDEC standards specifications.

Keysight Technologies
keysight.com

Termination
XMA Corp. announced the release of high frequency terminations with zero outgassing features. A recent independent test performed by Integrity Testing Laboratory (ITL) confirmed a finding that 40 GHz millimeter wave terminations manufactured by XMA meet ASTM Method E 595 Total Mass Loss and Collected Volatile Condensable Material standards.

XMA Corp.
xmacorp.com

Performance Over Time
You can’t afford to wonder if your cables are impacting your results. You expect your cables to be reliable. You need your cables to last.

But, with 75% of cables failing during installation or operation, your cable selection needs to be more than an afterthought. Choosing authentic GORE® Microwave/RF Test Assemblies is the only way to be sure your cables will stand up to the rigors of everyday use in demanding applications.

GORE® PHASEFLEX® Microwave/RF Test Assemblies – for proven performance, time and again. Learn what sets GORE® Microwave/RF Test Assemblies apart at: www.gore.com/test

Visit us at IMS 2015, Booth 1042

GORE, PHASEFLEX, the purple cable and designs are trademarks of W. L. Gore & Associates.

Get info at www.HFeLink.com
Product Highlights

HPA

Cree released the highest power Ku-Band MMIC available on the market. Covering the 13.5 – 14.75 GHz commercial satcom band, the new 30W GaN MMIC two-stage high power amplifier (HPA) will allow the satcom industry to achieve higher power, more efficient Ku-Band solutions than the incumbent TWT or GaAs solutions utilized today.

Cree
cree.com

Antenna

Model SAM-353332205-28-L1 is a 35 GHz microstrip patch array antenna. It is a linear polarized antenna that implements series-fed power distribution to achieve lowest sidelobe levels. Gain is 22 dBi and beamwidth is 15 degrees vertically and 4.8 degrees horizontally with better than 20 dB sidelobe suppression level. It is constructed with high performance and low loss soft microwave substrates to achieve the best performance.

SAGE Millimeter
sagemillimeter.com
Product Highlights

Analyzer App Note

A new app note describes measurement techniques using FieldFox handheld analyzers and shows examples for measuring and troubleshooting transmission lines installed in a system. It describes transmission line types, including coaxial cable, two-wire, waveguide and a variety of printed circuit configurations. Also discussed: very long cable insertion loss, gain through frequency translation, waveguide loss, distance to fault, and more.

Keysight Technologies
keysight.com

Synthesizer

The MLBS-Series Bench test synthesizers are ideal for production test sets, laboratory tests and test equipment racks where generation of microwave signals is essential. Frequency coverage is 2 to 20 GHz. Each bench top synthesizer consists of a frequency synthesizer, heat sink, power supply, cooling fans, keyboard, display, USB interface, Ethernet interface and a manual tuning knob.

Micro Lambda Wireless
microlambdawireless.com
Laboratory Microprobe Station

J microTechnology introduced a new model of the successful and affordable LMS-27/3X microprobe station product line to enhance the flexibility of microprobing solutions. The most recent introduction has the following features:

- 3” rounded square gold plated shielded and isolated chuck with vacuum stage has 1” of X-Y movement plus 0.090” of Z lift.
- 11.5” X 15” nickel plated steel top plate for magnetic positioners.
- Accessories include a vacuum pump, tubing and tools.
- Shipped in a wheeled, cut foam lined, waterproof shipping container for system safety and storage.
- Compatible with KRN-09S micro positioners with flexibility for either Shielded DC needle probes, Triax probes, coax and microwave probes.

Optics offered for a system include either a Binocular or Trinocular 7X-30X microscope with adjustable intensity LED ring light. Positioners are magnetic mount with 0.5” of fine adjustment travel using ball bearing slides in X-Y-Z. Probe mount for positioner offer a high level of gross height adjustability for setup of non-standard or non-wafer tests. Applications include: chip, carrier and wafer device test and characterization, sample lot verification and qualification, pilot/small lot production test fixture. The basic base system to configure a required test platform, rugged, flexible and affordable.

Turn-key systems or individual components are available, usually from stock.

J microTechnology
jmicrotechnology.com
Product Highlights

Power Divider
Werbel Microwave’s 4PN325 4-way power divider covers 500 - 6,000 MHz continuously with typical 1.5/1.2:1 input/output VSWR, 22-dB typical isolation and precisely tuned for excellent phase balance at all ports. The unit is usable down to 250-MHz with roll-off toward 2:1 VSWR. Rugged, large and heavy all-American construction.

Werbel Microwave
werbelmicrowave.com

VidaRF offers a new 2 way power divider Model: VPD-20180A2, Directional Coupler, VDC-20180A10 and Hybrid Coupler VHC-20180A, SMA S/Steel connectors, operating temp -55 to +85 C. Sealed and painted to meet IP65 standards.

VidaRF
vidarf.com

Just like the legendary Ford Built GT500 Mustang classic design...

Lansdale Semiconductor still manufactures some of the most popular... and timeless commercial wireless, telecommunications, military and aerospace integrated circuits (ICs) classic designs.

As a global pioneer in IC products life cycle management, Lansdale manufactures over 3,000 classic design ICs in the original package, exactly as they were created and produced by AMD, Farchild, Freescale Semiconductor, Harris, Intel, Motorola, National, Philips (formerly Signetics), and Raytheon.

Our exclusive life cycle management program assures you of a dependable, continuous, cost effective, and high quality source of classic designed ICs today... and tomorrow!

This means Lansdale eliminates the need to go to the time or expense of designing in a replacement part or even doing a complete product redesign – not when we still make ‘em... exactly like they used to.

Log on to our Web site at www.lansdale.com to review our up-to-date product listings and data sheets.

Contact Sandi@Lansdale.com today.
5245 South 39th Street
Phoenix, AZ 85040-9008
Phone: 602.438.0123 • Fax: 602.438.0138

Classic Designs Are Timeless®

Get info at www.HFeLink.com
LTE Tester

Anritsu Company and EMITE announced that the Anritsu MT8820C Radio Communication Tester has been successfully used in combination with the EMITE E500 Reverberation Chamber and Anite Propsim FS8 channel emulator to test LTE Carrier Aggregation, using 2x2 MIMO and more realistic isotropic Urban-Macro (UMA) fading profiles. The tests were performed for a leading U.S. carrier.

“We are very happy to have Anritsu’s excellent MT8820C base station emulators integrated in our MIMO OTA Carrier Aggregation RC+CE test platform, as this will certainly add value to our customers,” said David Sanchez-Hernandez, CEO and co-founder of EMITE. “Being able to test LTE CA + MIMO + UMA with a variety of auxiliary equipment units is a novelty worldwide, and brings MIMO OTA testing to a higher level of realism and applicability worldwide.”

The MT8820C LTE One-Box Tester is a multi-format 2G, 3G, and LTE tester with capability for UE calibration, RF parametric testing, and functional testing, including call processing or no-call based testing. Supported formats include LTE-A, LTE, W-CDMA/HSPA CDMA2K up to 1xEV-DO rel. A, TD-SCDMA/HSPA, and GSM/GPRS/EGPRS. The MT8820C provides the most stable and most widely proven implementation of cellular standards for base station emulation and “call box” testing.

EMITE’s unique multicavity mode-stirred source-stirred reverberation chamber solutions (MSRC) provide for a variety of fading scenarios at a fraction of the cost of alternative anechoic chamber-based test solutions. Along with conventional uniform, isotropic Rayleigh and more complex SCME-based fading profiles for MIMO OTA testing, the EMITE solutions are the only ones also offering other standardized fading profiles using the patented Sample Selection technique, something unheard of in the wireless arena until now.

Anritsu Company
Anritsu.com
Product Highlights

Pasternack introduced an all new line of broadband log video amplifiers covering multi-octave bandwidths from 0.5 GHz to 18 GHz. The 5 models being released include 4 Successive Detection Log Video Amplifiers (SDLVA), and 1 Detector Log Video Amplifier (DLVA), which offer a wide input dynamic range, high signal sensitivity, fast recovery times, and excellent temperature stability.

Pasternack
pasternack.com

Capacitors

Passive Plus now offers a line of Hi-Q Capacitors available in 4 larger case sizes. Specifically produced for high power / high frequency requirements, these products available in surface mount or leaded configurations that are 100% RoHS compliant and are also available in a Non-magnetic termination.

Passive Plus
passiveplus.com

Temperature Variable Attenuators

TVAs from the recognized leader in high reliability resistive components offer:

- Case size 0.150” x 0.125” x 0.018”
- Choice of three temperature coefficient of attenuation (TCA) values: -0.003, -0.007, -0.009
- Attenuation values from 1-10 dB
- Planar design with solderable or wire bondable terminations
- Lower signal distortion, phase change and intermodulation compared with active circuit temperature compensation

When the mission is critical, choose State of the Art.

State of the Art, Inc.
RESISTIVE PRODUCTS

www.resistor.com Made in the USA.

2470 Fox Hill Road, State College, PA 16803-1797
Phone: 800-458-3401 or 814-355-8004 • Fax: 814-355-2714
E-mail: sales@resistor.com • Source code: 56235

QUALIFICATIONS ISO9001 & AS9100 • MIL-PRF-55342 • MIL-PRF-32159 • MIL-PRF-914

Get info at www.HFeLink.com
Switch

PIM Model No: P2T-500M18G-80-T-515-SFF-4W is a SPDT, Absorptive, PIN Diode Switch that operates over the 0.5 to 18.0GHz frequency range. This switch handles a maximum RF Input Power of 4 Watts CW, a switching speed (On/Off) of 200ns, an Isolation of 70 dB Minimum, Insertion Loss of 3.5 dB Typical, VSWR of 2:1 and the DC power supply is +5, -15vdc. Size is only 1.0” X 1.0” X 0.40”.

Planar Monolithic Industries
pmi-rf.com
Armed with the world’s largest selection of in-stock, ready to ship RF components, and the brains to back them up, Pasternack Component Engineers, or Componenteers™ as we like to say, stand ready to troubleshoot technical issues and think creatively to deliver solutions for all your RF project needs. Whether you’ve hit a design snag, you’re looking for a hard to find part or simply need it by tomorrow our Componenteers are at your service. Call or visit us at pasternack.com to learn more.
Controller

Linear Technology Corporation announced the LTC3892, a high voltage dual output synchronous step-down DC/DC controller that draws only 29µA when one output is active and 34µA when both outputs are enabled. The 4.5V to 60V input supply range is designed to protect against high voltage transients, ensuring continuous operation during automotive cold crank and to accommodate a broad range of input sources and battery chemistries. Each output can be set from 0.8V to 99% of VIN at output currents over 20 amps with efficiencies as high as 96%, making it well suited for 12V or 24V automotive, heavy equipment, industrial control, robotics and telecom applications.

The LTC3892/-1’s adjustable 5V to 10V gate drivers enable the use of logic- or standard-level MOSFETs to maximize efficiency. It operates with a selectable fixed frequency between 50kHz and 900kHz, and can be synchronized to an external clock from 75kHz to 850kHz. The user can select from continuous operation, pulse-skipping and low ripple Burst Mode® operation during light loads. The LTC3892/-1’s 2-phase operation reduces input filtering and capacitance requirements. Its current mode architecture provides easy loop compensation, fast transient response, fixed frequency operation, excellent line regulation and easy current sharing with paralleled phases for higher current. Output current sensing is accomplished by measuring the voltage drop across the output inductor (DCR) for the highest efficiency or by using an optional sense resistor for high accuracy. Current foldback limits MOSFET heat dissipation during overload conditions. This device is available in two versions; the LTC3892 being the full-featured part with two power good signals, adjustable current limit and fixed 3.3V or 5V output voltage options.

The LTC3892 is available in a 32-lead 5mm x 5mm QFN package and the LTC3892-1 is available in a 28-lead TSSOP package. Four temperature grades are available, with operation from -40 to 125°C for the extended and industrial grades, a high temp automotive range of -40°C to 150°C and a military grade guaranteed from -55°C to 150°C.

Linear Technology
linear.com
Product Highlights

Cavity Filter
RLC Electronics introduced a series of high frequency surface mount cavity filters for small scale, low profile system integration. Designs are created and constructed using proprietary techniques resulting in rugged, stable performance over a full range of environmental stresses. High Q cavity filter performance is available up to 30 GHz with profile height as low as 200mm.

RLC Electronics
rlcelectronics.com

Isolator
Model F3338-3325 is a full band WR28 waveguide junction isolator covering 26.5GHz to 40.0GHz frequency range with 0.6dB maximum insertion loss, 16.0dB minimum reverse isolation, 1.4:1 VSWR at input and output, and can handle 5 Watts of CW power with 2 Watts of reflected power. The RF ports are designed to match to UG-599/U waveguide flanges.

Wenteq Microwave
wenteq.com

TWO OF THE MOST INFLUENTIAL LEADERS IN THE INDUSTRY, NARDA & MITEQ, HAVE JOINED FORCES

Narda and MITEQ. Two Established Pioneers. One New Industry Leader.
Introducing L-3 Narda-MITEQ, your single source for the most robust, highest-quality RF and microwave products on the market. Backed by 60 years of experience in pioneering the industry, we’re committed to continuing our record of innovation and delivering the solutions our customers need. Narda and MITEQ – a powerful combination.

Learn more about all we have to offer by visiting our website at nardamiteq.com, or call us at (631) 231-1700.

Narda-MITEQ
l3com.com

Visit Us At IMS 2015 Booth 2626

Get info at www.HFeLink.com
Product Highlights

Attenuator

The 50P-2014 from JFW Industries is a 200-6000 MHz, solid-state variable attenuator with 0-95 dB of attenuation in 1 dB steps. It’s designed with USB control (via USB Mini-B connector), so it’s perfect for research & development labs or other flexible test environments (JFW software included or .dll file for integration into your own applications supplied upon request).

Custom MMIC

Multiplier

Custom MMIC announced the CMD214, a new 24 to 36 GHz (output) active x2 frequency multiplier in die form. The CMD214 accepts input signals in the range of 12 to 18 GHz and provides output to the second harmonic (24 to 36 GHz) at a level of +17 dBm. Isolations to the fundamental and third harmonics are greater than 32 dBc and 25 dBc, respectively.

Custom MMIC

custommmic.com

QuickSyn Synthesizers

QuickSyn Synthesizers Now Extended to mmW

Low Phase Noise and Fast Switching With USB/SPI Control

We’ve extended our popular QuickSyn Lite frequency synthesizers to three commonly used mmW bands—27 to 40 GHz, 50 to 67 GHz, and 76 to 82 GHz for high-speed short-range data links, WirelessHD, IEEE 802.11ad, digital radios, automotive radars, etc. QuickSyn mmW frequency synthesizer modules are ideal for demanding application environments like field trials and embedded systems where bulky benchtop solutions were the only choice.

Feature

- **PSL-2740**
- **PSL-5067**
- **PSL-7682**

Frequency GHz

- 27 to 40 GHz
- 50 to 67 GHz
- 76 to 82 GHz

Switching Speed μs

- 100
- 100
- 100

Phase Noise at 100 kHz

- -108 dBc/Hz at 40 GHz
- -105 dBc/Hz at 67 GHz
- -103 dBc/Hz at 82 GHz

Power (min) dBm

- +17
- +17
- +10

Output Connector

- 2.92 mm
- 1.85 mm
- WR-12

ni-microwavecomponents.com/quicksyn

877 474 2736

<table>
<thead>
<tr>
<th>Feature</th>
<th>PSL-2740</th>
<th>PSL-5067</th>
<th>PSL-7682</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 to 40 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 to 67 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76 to 82 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Speed μs</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Phase Noise at 100 kHz</td>
<td>-108 dBc/Hz</td>
<td>-105 dBc/Hz</td>
<td>-103 dBc/Hz</td>
</tr>
<tr>
<td>Power (min) dBm</td>
<td>+17</td>
<td>+17</td>
<td>+10</td>
</tr>
<tr>
<td>Output Connector</td>
<td>2.92 mm</td>
<td>1.85 mm</td>
<td>WR-12</td>
</tr>
</tbody>
</table>

©2014 National Instruments. All rights reserved. National Instruments, NI, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies.

Get info at www.HFeLink.com
Vincent McHenry

The microwave industry lost one of its true pioneers when Vincent J. McHenry, co-founder of OmniSpectra and Southwest Microwave, passed away April 2. He was 86.

McHenry was born on August 30, 1928 in Detroit, Mich. He attended the University of Detroit and subsequently entered the US Army Signal Corps, where he became an instructor in microwave systems during the Korean War. Following his military service, McHenry joined the Bendix Corporation, engaging in the design and testing of microwave components, including a series of miniature components (connectors, ferrite phase shifters, hybrid and directional couplers and terminations) for the Navy’s Eagle Missile Radar Guidance System. McHenry was granted nine patents covering these devices.

While at Bendix Research Laboratories, McHenry investigated the potential of this newly designed miniature coaxial connector, which he concluded in a 1959 report “would be an acceptable addition to any microwave system requiring a compact, low VSWR coupling method.” This family of connectors became the prototype for the OSM series at OmniSpectra, Inc., a company McHenry co-founded in 1962. He first served as its New Product Development Manager and later as Vice-President of Sales.

In late 1962, McHenry made another major mark on the industry by filling a longstanding need to upgrade the performance of conventional RF coaxial connectors. Using the engineering principles of the OSM series, he quickly produced a very low reflection, physically short between-series adapter prototype, which led to a complete line of adapters from OSM to other types, including N, C SC, TNC and BNC.

In 1981, McHenry co-founded his most successful venture, Southwest Microwave, where he worked as Director of Technology for the company’s Perimeter Security and Microwave Interconnect product divisions until his passing. During his tenure, McHenry made significant contributions to the design and manufacture of the company’s line of microwave sensors, and was instrumental in the development of the company’s INTREPID™ MicroPoint™ fence-mounted intrusion detection system. These Southwest Microwave technologies, which earned McHenry several additional patents in the 1970s and 80s, still play critical roles today in the physical security and protection of government and military compounds, utility sites, correctional institutions and industrial facilities worldwide.

McHenry had a sincere interest in Southwest Microwave’s employees, considering each of them to be a part of his extended family. His profound influence within the organization encouraged several generations of engineers to follow his path of innovation in RF technology and production design.

In 1997, McHenry won the Institute of Electrical and Electronic Engineers (IEEE) Pioneer Award, a prestigious Microwave industry honor for contributions to the development of electronic or aerospace systems. He was recognized, along with John H. Bryant and another Southwest co-founder, James Cheal, for his leading role in the invention of the Subminiature Type A (SMA RF) Coax Connector. This technology has remained in use for nearly 50 years, and marked a significant achievement in both McHenry’s career and the field of Microwave technology to which he dedicated his life.

Vince McHenry was preceded in death by his beloved wife of 38 years, Barbara. He is survived by his sister Irene MacKinnon, his son Dean McHenry, his two daughters Andrea McSweeny and Ann McHenry, six grandchildren, and two great-grandsons.
Advertiser Index

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Switch</td>
<td>65</td>
</tr>
<tr>
<td>Technology</td>
<td>65</td>
</tr>
<tr>
<td>AMCOM</td>
<td>65</td>
</tr>
<tr>
<td>AmpliTech</td>
<td>65</td>
</tr>
<tr>
<td>AR Modular RF</td>
<td>65</td>
</tr>
<tr>
<td>CEL</td>
<td>65</td>
</tr>
<tr>
<td>Cernex</td>
<td>65</td>
</tr>
<tr>
<td>Coilcraft</td>
<td>65</td>
</tr>
<tr>
<td>Cobham Innet</td>
<td>65</td>
</tr>
<tr>
<td>Communication Concepts</td>
<td>65</td>
</tr>
<tr>
<td>CST</td>
<td>65</td>
</tr>
<tr>
<td>C. W. Swift & Associates</td>
<td>65</td>
</tr>
<tr>
<td>C. W. Swift/SRI</td>
<td>65</td>
</tr>
<tr>
<td>Connector Gage</td>
<td>65</td>
</tr>
<tr>
<td>Damaskos</td>
<td>65</td>
</tr>
<tr>
<td>dBm</td>
<td>65</td>
</tr>
<tr>
<td>Delta Electronics</td>
<td>65</td>
</tr>
<tr>
<td>Fairview Microwave</td>
<td>65</td>
</tr>
<tr>
<td>GT Microwave</td>
<td>65</td>
</tr>
<tr>
<td>Herotek</td>
<td>65</td>
</tr>
<tr>
<td>IMS 2015</td>
<td>65</td>
</tr>
<tr>
<td>Isola Group</td>
<td>65</td>
</tr>
<tr>
<td>IW Microwave</td>
<td>65</td>
</tr>
<tr>
<td>Lansdale Semiconductor</td>
<td>65</td>
</tr>
<tr>
<td>JFW Industries</td>
<td>65</td>
</tr>
<tr>
<td>J micro Technology</td>
<td>65</td>
</tr>
<tr>
<td>L-3 Narda Miteq</td>
<td>65</td>
</tr>
<tr>
<td>Luff Research</td>
<td>65</td>
</tr>
<tr>
<td>Luff Research</td>
<td>65</td>
</tr>
<tr>
<td>Master Bond</td>
<td>65</td>
</tr>
<tr>
<td>MECA Electronics</td>
<td>65</td>
</tr>
<tr>
<td>Micro Lambda Wireless</td>
<td>65</td>
</tr>
<tr>
<td>Microwave Components</td>
<td>65</td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td>65</td>
</tr>
</tbody>
</table>

The ad index is provided as an additional service by the publisher, who assumes no responsibility for errors or omissions.

Find Our Advertisers' Web Sites using HFElink™

1. Go to our company information Web site: www.HFElink.com, or
2. From www.highfrequencyelectronics.com, click on the HFElink reminder on the home page
3. Companies in our current issue are listed, or you can choose one of our recent issues
4. Find the company you want ... and just click!
5. Or view our Online Edition and simply click on any ad!

High Frequency Electronics

Publisher
Scott Spencer
Tel: 603-472-8261 • Fax: 631-667-2871
scott@highfrequencyelectronics.com

Advertising Sales — East
Gary Rhodes
Vice President, Sales
Tel: 631-274-9530 • Fax: 631-667-2871
grhodes@highfrequencyelectronics.com

Advertising Sales — West
Tim Burkhard
Associate Publisher
Tel: 707-544-9977 • Fax: 707-544-9375
tim@highfrequencyelectronics.com

Advertising Sales — Central
Keith Neighbour
Tel: 773-275-4020 • Fax: 773-275-3438
keith@highfrequencyelectronics.com

Advertising Sales — West — New Accounts
Jeff Victor
Tel: 224-436-8044 • Fax: 509-472-1888
jeff@highfrequencyelectronics.com

Advertising Sales — New Accounts & Product Showcase
Joanne Frangides
Tel: 201-666-6698 • Fax: 201-666-6698
joanne@highfrequencyelectronics.com

U.K. and Europe
Sam Baird
Tel: +44 1883 715 697 • Fax: +44 1883 715 697
sam@highfrequencyelectronics.com

U.K. and Europe
Zena Coupé
Tel: +44 1923 852 537 • Fax: +44 1923 852 261
zena@highfrequencyelectronics.com
With a vast selection of standard and custom RF coaxial connectors and cable assemblies, Molex offers high performance with design flexibility.

Designed for 50 and 75 Ohm applications, cable designs are offered in standard configurations, as well as custom, ganged and bundled harness solutions. They accommodate a wide range of cable types that include MIL-C-17, semi-rigid, conformable and micro coaxial cables. Wireless jumper cables are constructed with either annular or helical corrugated cable.

Flexible Microwave Cable Assemblies offer excellent electrical properties while replacing difficult-to-install, semi-rigid assemblies.

With a wide array of cables and connectors tailored to meet precise specifications, Molex can design a solution perfect for your application.

Applications include:
- Wireless Internet TV and Audio
- Telecommunication Networks
- Wireless Base Stations
- Network Interfaces
- Medical Devices
- Access Controllers
- Repeaters

Visit our site to design your cable assembly with our online configurator.

molex.com/product/rfcables
If you thought the Grand Canyon was deep and wide...

See us at Booth # 2436 at IEEE IMS 2015

Richardson RFPD’s unbeatable combination of deep technical expertise and wide product portfolio allows our customers to realize even their grandest design ideas.

Visit us in Phoenix, May 19-21, 2015.

RichardsonRFPD
An Arrow Company

Your Global Source for RF, Wireless, Energy & Power Technologies
www.richardsonrfpd.com | 800.737.6937 | 630.262.6800